enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Milne-Thomson circle theorem - Wikipedia

    en.wikipedia.org/wiki/Milne-Thomson_circle_theorem

    In fluid dynamics the Milne-Thomson circle theorem or the circle theorem is a statement giving a new stream function for a fluid flow when a cylinder is placed into that flow. [ 1 ] [ 2 ] It was named after the English mathematician L. M. Milne-Thomson .

  3. Discharge coefficient - Wikipedia

    en.wikipedia.org/wiki/Discharge_coefficient

    In a nozzle or other constriction, the discharge coefficient (also known as coefficient of discharge or efflux coefficient) is the ratio of the actual discharge to the ideal discharge, [1] i.e., the ratio of the mass flow rate at the discharge end of the nozzle to that of an ideal nozzle which expands an identical working fluid from the same initial conditions to the same exit pressures.

  4. Richardson number - Wikipedia

    en.wikipedia.org/wiki/Richardson_Number

    The Richardson number (Ri) is named after Lewis Fry Richardson (1881–1953). [1] It is the dimensionless number that expresses the ratio of the buoyancy term to the flow shear term: [2]

  5. Plateau–Rayleigh instability - Wikipedia

    en.wikipedia.org/wiki/Plateau–Rayleigh_instability

    Three examples of droplet detachment for different fluids: (left) water, (center) glycerol, (right) a solution of PEG in water. In fluid dynamics, the Plateau–Rayleigh instability, often just called the Rayleigh instability, explains why and how a falling stream of fluid breaks up into smaller packets with the same total volume but less surface area per droplet.

  6. Lattice Boltzmann methods - Wikipedia

    en.wikipedia.org/wiki/Lattice_Boltzmann_methods

    Schematic of D2Q9 lattice vectors for 2D Lattice Boltzmann. Unlike CFD methods that solve the conservation equations of macroscopic properties (i.e., mass, momentum, and energy) numerically, LBM models the fluid consisting of fictive particles, and such particles perform consecutive propagation and collision processes over a discrete lattice.

  7. Material point method - Wikipedia

    en.wikipedia.org/wiki/Material_Point_Method

    The PIC was originally conceived to solve problems in fluid dynamics, and developed by Harlow at Los Alamos National Laboratory in 1957. [1] One of the first PIC codes was the Fluid-Implicit Particle (FLIP) program, which was created by Brackbill in 1986 [2] and has been constantly in development ever since. Until the 1990s, the PIC method was ...

  8. Non-dimensionalization and scaling of the Navier–Stokes ...

    en.wikipedia.org/wiki/Non-dimensionalization_and...

    In fluid mechanics, non-dimensionalization of the Navier–Stokes equations is the conversion of the Navier–Stokes equation to a nondimensional form. This technique can ease the analysis of the problem at hand, and reduce the number of free parameters. Small or large sizes of certain dimensionless parameters indicate the importance of certain ...

  9. Rayleigh problem - Wikipedia

    en.wikipedia.org/wiki/Rayleigh_problem

    In fluid dynamics, Rayleigh problem also known as Stokes first problem is a problem of determining the flow created by a sudden movement of an infinitely long plate from rest, named after Lord Rayleigh and Sir George Stokes. This is considered as one of the simplest unsteady problems that have an exact solution for the Navier-Stokes equations.