Search results
Results from the WOW.Com Content Network
SqueezeNet is a deep neural network for image classification released in 2016. SqueezeNet was developed by researchers at DeepScale , University of California, Berkeley , and Stanford University . In designing SqueezeNet, the authors' goal was to create a smaller neural network with fewer parameters while achieving competitive accuracy.
Image segmentation via spectral graph partitioning by LOBPCG with multigrid preconditioning has been first proposed in [53] and actually tested in [54] and. [55] The latter approach has been later implemented in Python scikit-learn [56] that uses LOBPCG from SciPy with algebraic multigrid preconditioning for solving the eigenvalue problem for ...
Caffe supports many different types of deep learning architectures geared towards image classification and image segmentation. It supports CNN, RCNN, LSTM and fully-connected neural network designs. [8] Caffe supports GPU- and CPU-based acceleration computational kernel libraries such as Nvidia cuDNN and Intel MKL. [9] [10]
Medical open network for AI (MONAI) is an open-source, community-supported framework for Deep learning (DL) in healthcare imaging. MONAI provides a collection of domain-optimized implementations of various DL algorithms and utilities specifically designed for medical imaging tasks.
U-Net was created by Olaf Ronneberger, Philipp Fischer, Thomas Brox in 2015 and reported in the paper "U-Net: Convolutional Networks for Biomedical Image Segmentation". [1] It is an improvement and development of FCN: Evan Shelhamer, Jonathan Long, Trevor Darrell (2014). "Fully convolutional networks for semantic segmentation". [2]
Another encodes the quantized vectors back to image patches. The training objective attempts to make the reconstruction image (the output image) faithful to the input image. The discriminator (usually a convolutional network, but other networks are allowed) attempts to decide if an image is an original real image, or a reconstructed image by ...
As applied in the field of computer vision, graph cut optimization can be employed to efficiently solve a wide variety of low-level computer vision problems (early vision [1]), such as image smoothing, the stereo correspondence problem, image segmentation, object co-segmentation, and many other computer vision problems that can be formulated in terms of energy minimization.
It is usually used to create a vector field from images that points to object edges from a distance. It is widely used in image analysis and computer vision applications for object tracking, shape recognition, segmentation, and edge detection. In particular, it is commonly used in conjunction with active contour model.