enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Coefficient of determination - Wikipedia

    en.wikipedia.org/wiki/Coefficient_of_determination

    Ordinary least squares regression of Okun's law.Since the regression line does not miss any of the points by very much, the R 2 of the regression is relatively high.. In statistics, the coefficient of determination, denoted R 2 or r 2 and pronounced "R squared", is the proportion of the variation in the dependent variable that is predictable from the independent variable(s).

  3. Effect size - Wikipedia

    en.wikipedia.org/wiki/Effect_size

    A related effect size is r 2, the coefficient of determination (also referred to as R 2 or "r-squared"), calculated as the square of the Pearson correlation r. In the case of paired data, this is a measure of the proportion of variance shared by the two variables, and varies from 0 to 1.

  4. Pseudo-R-squared - Wikipedia

    en.wikipedia.org/wiki/Pseudo-R-squared

    The last value listed, labelled “r2CU” is the pseudo-r-squared by Nagelkerke and is the same as the pseudo-r-squared by Cragg and Uhler. Pseudo-R-squared values are used when the outcome variable is nominal or ordinal such that the coefficient of determination R 2 cannot be applied as a measure for goodness of fit and when a likelihood ...

  5. Linear trend estimation - Wikipedia

    en.wikipedia.org/wiki/Linear_trend_estimation

    Black = unfiltered data; red = data averaged every 10 points; blue = data averaged every 100 points. All have the same trend, but more filtering leads to higher r 2 of fitted trend line. The least-squares fitting process produces a value, r-squared ( r 2 ), which is 1 minus the ratio of the variance of the residuals to the variance of the ...

  6. Regression validation - Wikipedia

    en.wikipedia.org/wiki/Regression_validation

    One measure of goodness of fit is the coefficient of determination, often denoted, R 2. In ordinary least squares with an intercept, it ranges between 0 and 1. However, an R 2 close to 1 does not guarantee that the model fits the data well. For example, if the functional form of the model does not match the data, R 2 can be high despite a poor ...

  7. Ordinary least squares - Wikipedia

    en.wikipedia.org/wiki/Ordinary_least_squares

    In statistics, ordinary least squares (OLS) is a type of linear least squares method for choosing the unknown parameters in a linear regression model (with fixed level-one [clarification needed] effects of a linear function of a set of explanatory variables) by the principle of least squares: minimizing the sum of the squares of the differences between the observed dependent variable (values ...

  8. An expanding coalition of health and consumer advocates is campaigning against Robert F. Kennedy Jr.'s nomination to the top U.S. health job over concerns about his activism against vaccines and ...

  9. Variance inflation factor - Wikipedia

    en.wikipedia.org/wiki/Variance_inflation_factor

    Then, calculate the VIF factor for ^ with the following formula : = where R 2 i is the coefficient of determination of the regression equation in step one, with on the left hand side, and all other predictor variables (all the other X variables) on the right hand side.