Search results
Results from the WOW.Com Content Network
In geometry, tangent circles (also known as kissing circles) are circles in a common plane that intersect in a single point. There are two types of tangency : internal and external. Many problems and constructions in geometry are related to tangent circles; such problems often have real-life applications such as trilateration and maximizing the ...
If = + is the distance from c 1 to c 2 we can normalize by =, =, = to simplify equation (1), resulting in the following system of equations: + =, + =; solve these to get two solutions (k = ±1) for the two external tangent lines: = = + = (+) Geometrically this corresponds to computing the angle formed by the tangent lines and the line of ...
In calculus, the method of normals was a technique invented by Descartes for finding normal and tangent lines to curves. It represented one of the earliest methods for constructing tangents to curves. The method hinges on the observation that the radius of a circle is always normal to the circle itself. With this in mind Descartes would ...
The geometrical idea of the tangent line as the limit of secant lines serves as the motivation for analytical methods that are used to find tangent lines explicitly. The question of finding the tangent line to a graph, or the tangent line problem, was one of the central questions leading to the development of calculus in the 17th century.
Kissing circles. Given three mutually tangent circles (black), there are, in general, two possible answers (red) as to what radius a fourth tangent circle can have.In geometry, Descartes' theorem states that for every four kissing, or mutually tangent, circles, the radii of the circles satisfy a certain quadratic equation.
If , are tangent from different sides of (one in and one out), is the length of the interior common tangent. The converse of Casey's theorem is also true. [ 4 ] That is, if equality holds, the circles are tangent to a common circle.
The tangents intercept at the radical line (in the diagram yellow). Similar considerations generate the second tangent circle, that meets the given circles at the points , (see diagram). All tangent circles to the given circles can be found by varying line . Positions of the centers
Fermat used adequality first to find maxima of functions, and then adapted it to find tangent lines to curves. To find the maximum of a term p ( x ) {\displaystyle p(x)} , Fermat equated (or more precisely adequated) p ( x ) {\displaystyle p(x)} and p ( x + e ) {\displaystyle p(x+e)} and after doing algebra he could cancel out a factor of e ...