Search results
Results from the WOW.Com Content Network
In chemistry, bond order is a formal measure of the multiplicity of a covalent bond between two atoms. As introduced by Gerhard Herzberg, [1] building off of work by R. S. Mulliken and Friedrich Hund, bond order is defined as the difference between the numbers of electron pairs in bonding and antibonding molecular orbitals.
For example, a bond between two s-orbital electrons is a sigma bond, because two spheres are always coaxial. In terms of bond order, single bonds have one sigma bond, double bonds consist of one sigma bond and one pi bond, and triple bonds contain one sigma bond and two pi bonds. However, the atomic orbitals for bonding may be hybrids.
The bond valence method or mean method (or bond valence sum) (not to be mistaken for the valence bond theory in quantum chemistry) is a popular method in coordination chemistry to estimate the oxidation states of atoms. It is derived from the bond valence model, which is a simple yet robust model for validating chemical structures with ...
The bond angle for a symmetric tetrahedral molecule such as CH 4 may be calculated using the dot product of two vectors. As shown in the diagram at left, the molecule can be inscribed in a cube with the tetravalent atom (e.g. carbon ) at the cube centre which is the origin of coordinates, O.
Structural and chemical properties, such as bond order, valency, and bond polarity, may be calculated from resonance weights. [2] Specifically, bond orders may be divided into their covalent and ionic contributions, while valency is the sum of bond orders of a given atom.
This is called a covalent bond. The bond order is equal to the number of bonding electrons minus the number of antibonding electrons, divided by 2. In this example, there are 2 electrons in the bonding orbital and none in the antibonding orbital; the bond order is 1, and there is a single bond between the two hydrogen atoms. [citation needed]
The Hückel definition of bond order attempts to quantify any additional stabilization that the system enjoys resulting from delocalization. In a sense, the Hückel bond order suggests that there are four π-bonds in benzene instead of the three that are implied by the Kekulé-type Lewis structures.
The bond-order formula at the bottom is closest to the reality of four equivalent oxygens each having a total bond order of 2. That total includes the bond of order 1 / 2 to the implied cation and follows the 8 − N rule [7] requiring that the main-group atom's bond-order total equals 8 − N valence electrons of the neutral atom ...