Search results
Results from the WOW.Com Content Network
The organ of Corti is located in the scala media of the cochlea of the inner ear between the vestibular duct and the tympanic duct and is composed of mechanosensory cells, known as hair cells. [2] Strategically positioned on the basilar membrane of the organ of Corti are three rows of outer hair cells (OHCs) and one row of inner hair cells ...
As acoustic sensors in mammals, stereocilia are lined up in the organ of Corti within the cochlea of the inner ear. In hearing, stereocilia transform the mechanical energy of sound waves into electrical signals for the hair cells, which ultimately leads to an excitation of the auditory nerve.
The stereocilia then convert these vibrations into nerve impulses which are taken up to the brain to be interpreted. Two of the three fluid sections are canals and the third is the 'organ of Corti' which detects pressure impulses that travel along the auditory nerve to the brain. The two canals are called the vestibular canal and the tympanic ...
Section through the organ of Corti, showing inner and outer hair cells. The deflection of the hair-cell stereocilia opens mechanically gated ion channels that allow any small, positively charged ions (primarily potassium and calcium) to enter the cell. [10] Unlike many other electrically active cells, the hair cell itself does not fire an ...
The hair bundle consists of an array of actin-based stereocilia. Each stereocilium inserts as a rootlet into a dense filamentous actin mesh known as the cuticular plate. Disruption of these bundles results in hearing impairments and balance defects. Inner and outer pillar cells in the organ of Corti support hair cells.
The cochlear duct contains the organ of Corti. [ 2 ] [ 5 ] This is attached to the basilar membrane. [ 5 ] It also contains endolymph , which contains high concentrations of K + for the function of inner hair cells and outer hair cells in the organ of Corti.
Stereocilia (or stereovilli or villi) are non-motile apical cell modifications. They are distinct from cilia and microvilli , but are closely related to microvilli. They form single "finger-like" projections that may be branched, with normal cell membrane characteristics.
"Tectorial" in anatomy means forming a cover. The TM is located above the spiral limbus and the spiral organ of Corti and extends along the longitudinal length of the cochlea parallel to the BM. Radially the TM is divided into three zones, the limbal, middle and marginal zones.