enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Intersection (set theory) - Wikipedia

    en.wikipedia.org/wiki/Intersection_(set_theory)

    So the intersection of the empty family should be the universal set (the identity element for the operation of intersection), [4] but in standard set theory, the universal set does not exist. However, when restricted to the context of subsets of a given fixed set X {\displaystyle X} , the notion of the intersection of an empty collection of ...

  3. List of set identities and relations - Wikipedia

    en.wikipedia.org/wiki/List_of_set_identities_and...

    This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.

  4. Algebra of sets - Wikipedia

    en.wikipedia.org/wiki/Algebra_of_sets

    The algebra of sets is the set-theoretic analogue of the algebra of numbers. Just as arithmetic addition and multiplication are associative and commutative, so are set union and intersection; just as the arithmetic relation "less than or equal" is reflexive, antisymmetric and transitive, so is the set relation of "subset".

  5. Disjoint sets - Wikipedia

    en.wikipedia.org/wiki/Disjoint_sets

    Two disjoint sets. In set theory in mathematics and formal logic, two sets are said to be disjoint sets if they have no element in common. Equivalently, two disjoint sets are sets whose intersection is the empty set. [1] For example, {1, 2, 3} and {4, 5, 6} are disjoint sets, while {1, 2, 3} and {3, 4, 5} are not disjoint. A collection of two ...

  6. Union-closed sets conjecture - Wikipedia

    en.wikipedia.org/wiki/Union-closed_sets_conjecture

    Therefore, if is a union-closed family of sets, the family of complement sets to sets in relative to the universe () is closed under intersection, and an element that belongs to at least half of the sets of belongs to at most half of the complement sets. Thus, an equivalent form of the conjecture (the form in which it was originally stated) is ...

  7. Near sets - Wikipedia

    en.wikipedia.org/wiki/Near_sets

    For disjoint sets, a form of nearness set intersection is defined in terms of a set of objects (extracted from disjoint sets) that have similar features within some tolerance (see, e.g., §3 in). For example, the ovals in Fig. 1 are considered near each other, since these ovals contain pairs of classes that display similar (visually ...

  8. Finite intersection property - Wikipedia

    en.wikipedia.org/wiki/Finite_intersection_property

    Let be a set and a nonempty family of subsets of ; that is, is a subset of the power set of . Then is said to have the finite intersection property if every nonempty finite subfamily has nonempty intersection; it is said to have the strong finite intersection property if that intersection is always infinite.

  9. Projections onto convex sets - Wikipedia

    en.wikipedia.org/wiki/Projections_onto_convex_sets

    In mathematics, projections onto convex sets (POCS), sometimes known as the alternating projection method, is a method to find a point in the intersection of two closed convex sets. It is a very simple algorithm and has been rediscovered many times. [1] The simplest case, when the sets are affine spaces, was analyzed by John von Neumann.