Search results
Results from the WOW.Com Content Network
In set theory, the union (denoted by ∪) of a collection of sets is the set of all elements in the collection. [1] It is one of the fundamental operations through which sets can be combined and related to each other. A nullary union refers to a union of zero ( ) sets and it is by definition equal to the empty set.
In mathematics, the concept of a measure is a generalization and formalization of geometrical measures (length, area, volume) and other common notions, such as magnitude, mass, and probability of events. These seemingly distinct concepts have many similarities and can often be treated together in a single mathematical context.
In mathematics, the disjoint union (or discriminated union) of the sets A and B is the set formed from the elements of A and B labelled (indexed) with the name of the set from which they come. So, an element belonging to both A and B appears twice in the disjoint union, with two different labels.
In mathematics, the algebra of sets, not to be confused with the mathematical structure of an algebra of sets, defines the properties and laws of sets, the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions ...
Union [e] If R and S are relations over X then R ∪ S = { (x, y) | xRy or xSy} is the union relation of R and S. The identity element of this operation is the empty relation. For example, ≤ is the union of < and =, and ≥ is the union of > and =. Intersection [e] If R and S are relations over X then R ∩ S = { (x, y) | xRy and xSy} is the ...
Union commonly refers to: Trade union, an organization of workers; Union (set theory), in mathematics, a fundamental operation on sets; Union may also refer to:
In mathematics, the symmetric difference of two sets, also known as the disjunctive union and set sum, is the set of elements which are in either of the sets, ...
This definition of disjoint sets can be extended to families of sets and to indexed families of sets. By definition, a collection of sets is called a family of sets (such as the power set, for example). In some sources this is a set of sets, while other sources allow it to be a multiset of sets, with some sets repeated.