Search results
Results from the WOW.Com Content Network
The mating of yeast, also known as yeast sexual reproduction, is a biological process that promotes genetic diversity and adaptation in yeast species. Yeast species, such as Saccharomyces cerevisiae (baker's yeast), are single-celled eukaryotes that can exist as either haploid cells, which contain a single set of chromosomes , or diploid cells ...
N. crassa is used as a model organism because it is easy to grow and has a haploid life cycle: this makes genetic analysis simple, since recessive traits will show up in the offspring. Analysis of genetic recombination is facilitated by the ordered arrangement of the products of meiosis within a sac-like structure called an ascus (pl. asci).
[5] [6] Yeast sizes vary greatly, depending on species and environment, typically measuring 3–4 μm in diameter, although some yeasts can grow to 40 μm in size. [7] Most yeasts reproduce asexually by mitosis, and many do so by the asymmetric division process known as budding.
The principle asserts that no two species with similar ecological niches can coexist in a stable equilibrium, meaning that when two species compete for exactly the same requirements, one will be slightly more efficient than the other and will reproduce at a higher rate as a result. The fate of the less efficient species is local extinction.
Saccharomyces cerevisiae (/ ˌ s ɛr ə ˈ v ɪ s i. iː /) (brewer's yeast or baker's yeast) is a species of yeast (single-celled fungal microorganisms). The species has been instrumental in winemaking, baking, and brewing since ancient times. It is believed to have been originally isolated from the skin of grapes.
Population structure (also called genetic structure and population stratification) is the presence of a systematic difference in allele frequencies between subpopulations. In a randomly mating (or panmictic) population, allele frequencies are expected to be roughly similar between groups. However, mating tends to be non-random to some degree ...
Population genomics is the large-scale comparison of DNA sequences of populations. Population genomics is a neologism that is associated with population genetics.Population genomics studies genome-wide effects to improve our understanding of microevolution so that we may learn the phylogenetic history and demography of a population.
Population genetics describes natural selection by defining fitness as a propensity or probability of survival and reproduction in a particular environment. The fitness is normally given by the symbol w =1- s where s is the selection coefficient .