Search results
Results from the WOW.Com Content Network
Mass fraction can also be expressed, with a denominator of 100, as percentage by mass (in commercial contexts often called percentage by weight, abbreviated wt.% or % w/w; see mass versus weight). It is one way of expressing the composition of a mixture in a dimensionless size ; mole fraction (percentage by moles , mol%) and volume fraction ...
Water is also central to acid-base neutrality and enzyme function. An acid, a hydrogen ion (H +, that is, a proton) donor, can be neutralized by a base, a proton acceptor such as a hydroxide ion (OH −) to form water. Water is considered to be neutral, with a pH (the negative log of the hydrogen ion concentration) of 7 in an ideal state.
In water solutions containing relatively small quantities of dissolved solute (as in biology), such figures may be "percentivized" by multiplying by 100 a ratio of grams solute per mL solution. The result is given as "mass/volume percentage". Such a convention expresses mass concentration of 1 gram of solute in 100 mL of solution, as "1 m/v %".
Water is the most abundant substance on Earth's surface and also the third most abundant molecule in the universe, after H 2 and CO. [23] 0.23 ppm of the earth's mass is water and 97.39% of the global water volume of 1.38 × 10 9 km 3 is found in the oceans. [84]
Another scale is mass fraction or, equivalently, percent by mass. [2] For example, the abundance of oxygen in pure water can be measured in two ways: the mass fraction is about 89%, because that is the fraction of water's mass which is oxygen. However, the mole fraction is about 33% because only 1 atom of 3 in water, H 2 O, is oxygen.
This page was last edited on 10 September 2014, at 23:26 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
In chemistry and physics, the dimensionless mixing ratio is the abundance of one component of a mixture relative to that of all other components. The term can refer either to mole ratio (see concentration ) or mass ratio (see stoichiometry ).
A. Earnshaw, N. Greenwood, Chemistry of the Elements, 2nd edition, Butterworth-Heinemann, (1997). ISBN 0-7506-3365-4 Appendix 4, Abundance of Elements in Crustal Rocks. From this source with some modifications and additions of later data: W.S. Fyfe, Geochemistry, Oxford University Press, (1974). Further referring to: