enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. k-means clustering - Wikipedia

    en.wikipedia.org/wiki/K-means_clustering

    k-means clustering is a popular algorithm used for partitioning data into k clusters, where each cluster is represented by its centroid. However, the pure k -means algorithm is not very flexible, and as such is of limited use (except for when vector quantization as above is actually the desired use case).

  3. Determining the number of clusters in a data set - Wikipedia

    en.wikipedia.org/wiki/Determining_the_number_of...

    Explained Variance. The "elbow" is indicated by the red circle. The number of clusters chosen should therefore be 4. The elbow method looks at the percentage of explained variance as a function of the number of clusters: One should choose a number of clusters so that adding another cluster does not give much better modeling of the data.

  4. k-means++ - Wikipedia

    en.wikipedia.org/wiki/K-means++

    In data mining, k-means++ [1] [2] is an algorithm for choosing the initial values (or "seeds") for the k-means clustering algorithm. It was proposed in 2007 by David Arthur and Sergei Vassilvitskii, as an approximation algorithm for the NP-hard k-means problem—a way of avoiding the sometimes poor clusterings found by the standard k-means algorithm.

  5. File:K Means Example Step 1.svg - Wikipedia

    en.wikipedia.org/wiki/File:K_Means_Example_Step...

    This image is part of an example of the K-means algorithm. This is the first step, where the points and centroids are randomly placed. ... K-means clustering; Global ...

  6. Vector quantization - Wikipedia

    en.wikipedia.org/wiki/Vector_quantization

    Each group is represented by its centroid point, as in k-means and some other clustering algorithms. In simpler terms, vector quantization chooses a set of points to represent a larger set of points. The density matching property of vector quantization is powerful, especially for identifying the density of large and high-dimensional data.

  7. Model-based clustering - Wikipedia

    en.wikipedia.org/wiki/Model-based_clustering

    Several of these models correspond to well-known heuristic clustering methods. For example, k-means clustering is equivalent to estimation of the EII clustering model using the classification EM algorithm. [8] The Bayesian information criterion (BIC) can be used to choose the best clustering model as well as the number of clusters. It can also ...

  8. Microarray analysis techniques - Wikipedia

    en.wikipedia.org/wiki/Microarray_analysis_techniques

    K-means clustering is an algorithm for grouping genes or samples based on pattern into K groups. Grouping is done by minimizing the sum of the squares of distances between the data and the corresponding cluster centroid. Thus the purpose of K-means clustering is to classify data based on similar expression. [20]

  9. Fuzzy clustering - Wikipedia

    en.wikipedia.org/wiki/Fuzzy_clustering

    Fuzzy clustering (also referred to as soft clustering or soft k-means) is a form of clustering in which each data point can belong to more than one cluster.. Clustering or cluster analysis involves assigning data points to clusters such that items in the same cluster are as similar as possible, while items belonging to different clusters are as dissimilar as possible.