enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bioenergetic systems - Wikipedia

    en.wikipedia.org/wiki/Bioenergetic_systems

    ATP is the only type of usable form of chemical energy for musculoskeletal activity. It is stored in most cells, particularly in muscle cells. Other forms of chemical energy, such as those available from oxygen and food, must be transformed into ATP before they can be utilized by the muscle cells.

  3. Anaerobic exercise - Wikipedia

    en.wikipedia.org/wiki/Anaerobic_exercise

    Anaerobic exercise is a type of exercise that breaks down glucose in the body without using oxygen; anaerobic means "without oxygen". [1] This type of exercise leads to a buildup of lactic acid. [1] In practical terms, this means that anaerobic exercise is more intense, but shorter in duration than aerobic exercise. [2] Fox and Haskell formula

  4. Anaerobic glycolysis - Wikipedia

    en.wikipedia.org/wiki/Anaerobic_glycolysis

    The anaerobic glycolysis (lactic acid) system is dominant from about 10–30 seconds during a maximal effort. It produces 2 ATP molecules per glucose molecule, [3] or about 5% of glucose's energy potential (38 ATP molecules). [4] [5] The speed at which ATP is produced is about 100 times that of oxidative phosphorylation. [1]

  5. Adenosine triphosphate - Wikipedia

    en.wikipedia.org/wiki/Adenosine_triphosphate

    Interactive animation of the structure of ATP. Adenosine triphosphate (ATP) is a nucleoside triphosphate [2] that provides energy to drive and support many processes in living cells, such as muscle contraction, nerve impulse propagation, and chemical synthesis.

  6. Cellular waste product - Wikipedia

    en.wikipedia.org/wiki/Cellular_waste_product

    Cellular waste products are formed as a by-product of cellular respiration, a series of processes and reactions that generate energy for the cell, in the form of ATP. One example of cellular respiration creating cellular waste products are aerobic respiration and anaerobic respiration. Each pathway generates different waste products.

  7. Phosphorylation - Wikipedia

    en.wikipedia.org/wiki/Phosphorylation

    Phosphorylation is essential to the processes of both anaerobic and aerobic respiration, which involve the production of adenosine triphosphate (ATP), the "high-energy" exchange medium in the cell. During aerobic respiration, ATP is synthesized in the mitochondrion by addition of a third phosphate group to adenosine diphosphate (ADP) in a ...

  8. Adenosine diphosphate - Wikipedia

    en.wikipedia.org/wiki/Adenosine_diphosphate

    ATP contains one more phosphate group than ADP, while AMP contains one fewer phosphate group. Energy transfer used by all living things is a result of dephosphorylation of ATP by enzymes known as ATPases. The cleavage of a phosphate group from ATP results in the coupling of energy to metabolic reactions and a by-product of ADP. [1]

  9. Cellular respiration - Wikipedia

    en.wikipedia.org/wiki/Cellular_respiration

    The ATP generated in this process is made by substrate-level phosphorylation, which does not require oxygen. Fermentation is less efficient at using the energy from glucose: only 2 ATP are produced per glucose, compared to the 38 ATP per glucose nominally produced by aerobic respiration. Glycolytic ATP, however, is produced more quickly.