Search results
Results from the WOW.Com Content Network
The following modification of the program is also used sometimes: Start: read // read n -> acc jmpz Done // jump to Done if nacc is 0. add sum // add sum to the acc store sum // store the new sum jump Start // go back & read in next number Done: load sum // load the final sum write // write the final sum stop // stop sum: .data 2 0 // 2-byte ...
Digit sums and digital roots can be used for quick divisibility tests: a natural number is divisible by 3 or 9 if and only if its digit sum (or digital root) is divisible by 3 or 9, respectively. For divisibility by 9, this test is called the rule of nines and is the basis of the casting out nines technique for checking calculations.
In number theory, a narcissistic number [1] [2] (also known as a pluperfect digital invariant (PPDI), [3] an Armstrong number [4] (after Michael F. Armstrong) [5] or a plus perfect number) [6] in a given number base is a number that is the sum of its own digits each raised to the power of the number of digits.
Sum of Natural Numbers (second proof and extra footage) includes demonstration of Euler's method. What do we get if we sum all the natural numbers? response to comments about video by Tony Padilla; Related article from New York Times; Why –1/12 is a gold nugget follow-up Numberphile video with Edward Frenkel
For example, the sum of the first n natural numbers can be denoted as ∑ i = 1 n i {\displaystyle \sum _{i=1}^{n}i} For long summations, and summations of variable length (defined with ellipses or Σ notation), it is a common problem to find closed-form expressions for the result.
In number theory, a perfect digit-to-digit invariant (PDDI; also known as a Munchausen number [1]) is a natural number in a given number base that is equal to the sum of its digits each raised to the power of itself. An example in base 10 is 3435, because = + + +.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The digital root (also repeated digital sum) of a natural number in a given radix is the (single digit) value obtained by an iterative process of summing digits, on each iteration using the result from the previous iteration to compute a digit sum. The process continues until a single-digit number is reached.