Search results
Results from the WOW.Com Content Network
For two pairwise interacting point particles, the gravitational potential energy is the work that an outside agent must do in order to to quasi-statically bring the masses together (which is therefore, exactly opposite the work done by the gravitational field on the masses): = = =, where is the displacement vector between the two particles, = | | is the distance between the two particles, and ...
The fictitious force called a pseudo force might also be referred to as a body force. It is due to an object's inertia when the reference frame does not move inertially any more but begins to accelerate relative to the free object. In terms of the example of the passenger vehicle, a pseudo force seems to be active just before the body touches ...
The important point of this is that the zero-point field energy H F does not affect the Heisenberg equation for a kλ since it is a c-number or constant (i.e. an ordinary number rather than an operator) and commutes with a kλ. We can therefore drop the zero-point field energy from the Hamiltonian, as is usually done.
[note 11] In many cases of interest, the net work done by a force when a body moves in a closed loop — starting at a point, moving along some trajectory, and returning to the initial point — is zero. If this is the case, then the force can be written in terms of the gradient of a function called a scalar potential: [43]: 303 =.
In addition to Gauss's law, the assumption is used that g is irrotational (has zero curl), as gravity is a conservative force: ∇ × g = 0 {\displaystyle \nabla \times \mathbf {g} =0} Even these are not enough: Boundary conditions on g are also necessary to prove Newton's law, such as the assumption that the field is zero infinitely far from a ...
If there are no other external forces than gravity, the g-force in a rocket is the thrust per unit mass. Its magnitude is equal to the thrust-to-weight ratio times g, and to the consumption of delta-v per unit time. In the case of a shock, e.g., a collision, the g-force can be very large during a short time.
When a force acts on a particle, it is applied to a single point (the particle volume is negligible): this is a point force and the particle is its application point. But an external force on an extended body (object) can be applied to a number of its constituent particles, i.e. can be "spread" over some volume or surface of the body.
In this scenario, the gravitational force is mostly, but not entirely, diminished; anyone in the elevator would experience an absence of the usual gravitational pull, however the force is not exactly zero. Since gravity is a force directed towards the center of the Earth, two balls a horizontal distance apart would be pulled in slightly ...