enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Concave function - Wikipedia

    en.wikipedia.org/wiki/Concave_function

    The sum of two concave functions is itself concave and so is the pointwise minimum of two concave functions, i.e. the set of concave functions on a given domain form a semifield. Near a strict local maximum in the interior of the domain of a function, the function must be concave; as a partial converse, if the derivative of a strictly concave ...

  3. Martingale (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Martingale_(probability...

    A convex function of a martingale is a submartingale, by Jensen's inequality. For example, the square of the gambler's fortune in the fair coin game is a submartingale (which also follows from the fact that X n 2 − n is a martingale). Similarly, a concave function of a martingale is a supermartingale.

  4. Logarithmically concave function - Wikipedia

    en.wikipedia.org/wiki/Logarithmically_concave...

    Every concave function that is nonnegative on its domain is log-concave. However, the reverse does not necessarily hold. An example is the Gaussian function f(x) = exp(−x 2 /2) which is log-concave since log f(x) = −x 2 /2 is a concave function of x. But f is not concave since the second derivative is positive for | x | > 1:

  5. Concavification - Wikipedia

    en.wikipedia.org/wiki/Concavification

    This function is quasiconcave, but it is not concave (in fact, it is strictly convex). It can be concavified, for example, using the monotone transformation () = /, since (()) = is concave. Not every concave function can be concavified in this way.

  6. Convex optimization - Wikipedia

    en.wikipedia.org/wiki/Convex_optimization

    For example, the problem of maximizing a concave function can be re-formulated equivalently as the problem of minimizing the convex function . The problem of maximizing a concave function over a convex set is commonly called a convex optimization problem. [8]

  7. Logarithmically concave sequence - Wikipedia

    en.wikipedia.org/wiki/Logarithmically_concave...

    The rows of Pascal's triangle are examples for logarithmically concave sequences. In mathematics, a sequence a = (a 0, a 1, ..., a n) of nonnegative real numbers is called a logarithmically concave sequence, or a log-concave sequence for short, if a i 2 ≥ a i−1 a i+1 holds for 0 < i < n.

  8. Second derivative - Wikipedia

    en.wikipedia.org/wiki/Second_derivative

    The second derivative of a function f can be used to determine the concavity of the graph of f. [2] A function whose second derivative is positive is said to be concave up (also referred to as convex), meaning that the tangent line near the point where it touches the function will lie below the graph of the function.

  9. Logarithmically concave measure - Wikipedia

    en.wikipedia.org/wiki/Logarithmically_concave...

    The Brunn–Minkowski inequality asserts that the Lebesgue measure is log-concave. The restriction of the Lebesgue measure to any convex set is also log-concave.. By a theorem of Borell, [2] a probability measure on R^d is log-concave if and only if it has a density with respect to the Lebesgue measure on some affine hyperplane, and this density is a logarithmically concave function.