Search results
Results from the WOW.Com Content Network
During takeoff, ground effect can cause the aircraft to "float" while below the recommended climb speed. The pilot can then fly just above the runway while the aircraft accelerates in ground effect until a safe climb speed is reached. [2] For rotorcraft, ground effect results in less drag on the rotor during hovering close to the ground. At ...
considered point of the surface. Under these conditions, drag and lift coefficient are functions depending exclusively on the angle of attack of the body and Mach and Reynolds numbers. Aerodynamic efficiency, defined as the relation between lift and drag coefficients, will depend on those parameters as well.
The on-ground angle of attack of the wing has to be established during the design phase. The main and nose-gear leg lengths are chosen to give a negative angle of attack relative to the ground. This ensures the wing will have negative lift until the pilot rotates the aircraft to a positive angle of attack. During landing, the reverse happens ...
Propulsive, aerodynamic, and gravitational force vectors acting on a space vehicle during launch. The forces acting on space vehicles are of three types: propulsive force (usually provided by the vehicle's engine thrust); gravitational force exerted by the Earth and other celestial bodies; and aerodynamic lift and drag (when flying in the atmosphere of the Earth or another body, such as Mars ...
Aircraft flight mechanics are relevant to fixed wing (gliders, aeroplanes) and rotary wing (helicopters) aircraft.An aeroplane (airplane in US usage), is defined in ICAO Document 9110 as, "a power-driven heavier than air aircraft, deriving its lift chiefly from aerodynamic reactions on surface which remain fixed under given conditions of flight".
The pilot tilts the lift force, which is perpendicular to the wings, in the direction of the intended turn by rolling the aircraft into the turn. As the bank angle is increased, the lifting force can be split into two components: one acting vertically and one acting horizontally.
This avoids the risk of ground-looping at commencement of takeoff in a crosswind behind a tow plane. Gliders commencing a takeoff behind a tow plane are vulnerable to ground looping during cross-wind conditions because the slipstream from the propeller of the tow plane generates more lift on the downwind wing of the glider than on the upwind ...
This equilibrium can be expressed along a variety of axes in a variety of reference frames. The traditional steady flight equations derive from expressing this force balance along three axes: the x w-axis, the radial direction of the aircraft's turn in the x E-y E plane, and the axis perpendicular to x w in the x w-z E plane, [5]