enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dyadics - Wikipedia

    en.wikipedia.org/wiki/Dyadics

    In mathematics, specifically multilinear algebra, a dyadic or dyadic tensor is a second order tensor, written in a notation that fits in with vector algebra. There are numerous ways to multiply two Euclidean vectors. The dot product takes in two vectors and returns a scalar, while the cross product [a] returns a pseudovector.

  3. Invariants of tensors - Wikipedia

    en.wikipedia.org/wiki/Invariants_of_tensors

    A real tensor in 3D (i.e., one with a 3x3 component matrix) has as many as six independent invariants, three being the invariants of its symmetric part and three characterizing the orientation of the axial vector of the skew-symmetric part relative to the principal directions of the symmetric part.

  4. Tensors in curvilinear coordinates - Wikipedia

    en.wikipedia.org/wiki/Tensors_in_curvilinear...

    Some useful relations in the algebra of vectors and second-order tensors in curvilinear coordinates are given in this section. The notation and contents are primarily from Ogden, [2] Naghdi, [3] Simmonds, [4] Green and Zerna, [1] Basar and Weichert, [5] and Ciarlet. [6]

  5. Tensor algebra - Wikipedia

    en.wikipedia.org/wiki/Tensor_algebra

    In mathematics, the tensor algebra of a vector space V, denoted T(V) or T • (V), is the algebra of tensors on V (of any rank) with multiplication being the tensor product.It is the free algebra on V, in the sense of being left adjoint to the forgetful functor from algebras to vector spaces: it is the "most general" algebra containing V, in the sense of the corresponding universal property ...

  6. Levi-Civita symbol - Wikipedia

    en.wikipedia.org/wiki/Levi-Civita_symbol

    A tensor whose components in an orthonormal basis are given by the Levi-Civita symbol (a tensor of covariant rank n) is sometimes called a permutation tensor. Under the ordinary transformation rules for tensors the Levi-Civita symbol is unchanged under pure rotations, consistent with that it is (by definition) the same in all coordinate systems ...

  7. Outer product - Wikipedia

    en.wikipedia.org/wiki/Outer_product

    In linear algebra, the outer product of two coordinate vectors is the matrix whose entries are all products of an element in the first vector with an element in the second vector. If the two coordinate vectors have dimensions n and m , then their outer product is an n × m matrix.

  8. Tensor contraction - Wikipedia

    en.wikipedia.org/wiki/Tensor_contraction

    In multilinear algebra, a tensor contraction is an operation on a tensor that arises from the canonical pairing of a vector space and its dual.In components, it is expressed as a sum of products of scalar components of the tensor(s) caused by applying the summation convention to a pair of dummy indices that are bound to each other in an expression.

  9. Cauchy stress tensor - Wikipedia

    en.wikipedia.org/wiki/Cauchy_stress_tensor

    It can be shown that the stress tensor is a contravariant second order tensor, which is a statement of how it transforms under a change of the coordinate system. From an x i -system to an x i ' -system, the components σ ij in the initial system are transformed into the components σ ij ' in the new system according to the tensor transformation ...