Search results
Results from the WOW.Com Content Network
The torsion constant or torsion coefficient is a geometrical property of a bar's cross-section. It is involved in the relationship between angle of twist and applied torque along the axis of the bar, for a homogeneous linear elastic bar. The torsion constant, together with material properties and length, describes a bar's torsional stiffness.
Thus, the helicoidal field formed by the velocity vectors in a moving rigid body flattens out the further the points are radially from the twist axis. The points in a body undergoing a constant twist motion trace helices in the fixed frame. If this screw motion has zero pitch then the trajectories trace circles, and the movement is a pure rotation.
Torsion of a square section bar Example of torsion mechanics. In the field of solid mechanics, torsion is the twisting of an object due to an applied torque [1] [2].Torsion could be defined as strain [3] [4] or angular deformation [5], and is measured by the angle a chosen section is rotated from its equilibrium position [6].
The 35.5 cm Mantel Ring Kanone L/25 was a 35.5 cm 25 caliber long Krupp Mantel Ring Kanone (MRK). It was a rifled breech loader built-up gun with a Krupp cylindroprismatic sliding breech. It was one of the few Krupp breechloaders that was designed to profit from slower burning gunpowders, but not for using very long projectiles.
The curvature and the torsion of a helix are constant. Conversely, any space curve whose curvature and torsion are both constant and non-zero is a helix. The torsion is positive for a right-handed [1] helix and is negative for a left-handed one.
Poloidal direction (red arrow) and toroidal direction (blue arrow) A torus of revolution in 3-space can be parametrized as: [2] (,) = (+ ) (,) = (+ ) (,) = . using angular coordinates , [,), representing rotation around the tube and rotation around the torus' axis of revolution, respectively, where the major radius is the distance from the center of the tube to the center of ...
A classical torsion wire-based du Noüy ring tensiometer. The arrow on the left points to the ring itself. The most common correction factors include Zuidema–Waters correction factors (for liquids with low interfacial tension), Huh–Mason correction factors (which cover a wider range than Zuidema–Waters), and Harkins–Jordan correction factors (more precise than Huh–Mason, while still ...
The projective dimension and the depth of a module over a commutative Noetherian local ring are complementary to each other. This is the content of the Auslander–Buchsbaum formula, which is not only of fundamental theoretical importance, but also provides an effective way to compute the depth of a module.