Search results
Results from the WOW.Com Content Network
The m-stands for meta-, indicating that the two methyl groups in m-xylene occupy positions 1 and 3 on a benzene ring. It is in the positions of the two methyl groups, their arene substitution pattern, that it differs from the other isomers, o-xylene and p-xylene. All have the same chemical formula C 6 H 4 (CH 3) 2. All xylene isomers are ...
The physical properties of the isomers of xylene differ slightly. The melting point ranges from −47.87 °C (−54.17 °F) (m-xylene) to 13.26 °C (55.87 °F) (p-xylene)—as usual, the para isomer's melting point is much higher because it packs more readily in the crystal structure. The boiling point for each isomer is around 140 °C (284 °F).
In the petroleum refining and petrochemical industries, the initialism BTX refers to mixtures of benzene, toluene, and the three xylene isomers, all of which are aromatic hydrocarbons. The xylene isomers are distinguished by the designations ortho – (or o –), meta – (or m –), and para – (or p –) as indicated in the adjacent diagram.
The p-stands for para-, indicating that the two methyl groups in p-xylene occupy the diametrically opposite substituent positions 1 and 4. It is in the positions of the two methyl groups, their arene substitution pattern, that it differs from the other isomers, o-xylene and m-xylene. All have the same chemical formula C 6 H 4 (CH 3) 2. All ...
Heteroarenes are aromatic compounds, where at least one methine or vinylene (-C= or -CH=CH-) group is replaced by a heteroatom: oxygen, nitrogen, or sulfur. [3] Examples of non-benzene compounds with aromatic properties are furan, a heterocyclic compound with a five-membered ring that includes a single oxygen atom, and pyridine, a heterocyclic compound with a six-membered ring containing one ...
o-Xylene (ortho-xylene) is an aromatic hydrocarbon with the formula C 6 H 4 (CH 3) 2, with two methyl substituents bonded to adjacent carbon atoms of a benzene ring (the ortho configuration). It is a constitutional isomer of m -xylene and p -xylene , the mixture being called xylene or xylenes.
The oxidation products derived from methyl are hydroxymethyl group −CH 2 OH, formyl group −CHO, and carboxyl group −COOH. For example, permanganate often converts a methyl group to a carboxyl (−COOH) group, e.g. the conversion of toluene to benzoic acid. Ultimately oxidation of methyl groups gives protons and carbon dioxide, as seen in ...
For example, reaction of α,α'-dibromo-o-xylene with iron carbonyls affords low yields of the xylylene complex Fe(CO) 3 [η 4-C 6 H 4 (CH 2) 2]. This product is structurally analogous to Fe(CO) 3 [η 4-1,3-butadiene]. [11] At high temperatures, benzocyclobutenes undergo electrocyclic ring-opening to form o-xylylenes.