Search results
Results from the WOW.Com Content Network
Download as PDF; Printable version; In other projects Wikidata item; ... Pages in category "Pi algorithms" The following 17 pages are in this category, out of 17 total.
A spigot algorithm is an algorithm for computing the value of a transcendental number (such as π or e) that generates the digits of the number sequentially from left to right providing increasing precision as the algorithm proceeds. Spigot algorithms also aim to minimize the amount of intermediate storage required.
The search procedure consists of choosing a range of parameter values for s, b, and m, evaluating the sums out to many digits, and then using an integer relation-finding algorithm (typically Helaman Ferguson's PSLQ algorithm) to find a sequence A that adds up those intermediate sums to a well-known constant or perhaps to zero.
The Gauss–Legendre algorithm is an algorithm to compute the digits of π. It is notable for being rapidly convergent, with only 25 iterations producing 45 million correct digits of π . However, it has some drawbacks (for example, it is computer memory -intensive) and therefore all record-breaking calculations for many years have used other ...
Programming language – formal constructed language designed to communicate instructions to a machine, particularly a computer. Programming languages can be used to create programs to control the behavior of a machine or to express algorithms. Generational list of programming languages; List of programming languages by type
In computer science, communicating sequential processes (CSP) is a formal language for describing patterns of interaction in concurrent systems. [1] It is a member of the family of mathematical theories of concurrency known as process algebras, or process calculi, based on message passing via channels.
Once the message has been sent, becomes the process , while () becomes the process [/], which is with the place-holder substituted by , the data received on . The class of processes that P {\displaystyle {\mathit {P}}} is allowed to range over as the continuation of the output operation substantially influences the properties of the calculus.
The π-calculus belongs to the family of process calculi, mathematical formalisms for describing and analyzing properties of concurrent computation.In fact, the π-calculus, like the λ-calculus, is so minimal that it does not contain primitives such as numbers, booleans, data structures, variables, functions, or even the usual control flow statements (such as if-then-else, while).