Search results
Results from the WOW.Com Content Network
Powers of 2 appear in set theory, since a set with n members has a power set, the set of all of its subsets, which has 2 n members. Integer powers of 2 are important in computer science. The positive integer powers 2 n give the number of possible values for an n-bit integer binary number; for example, a byte may take 2 8 = 256 different values.
The only known powers of 2 with all digits even are 2 1 = 2, 2 2 = 4, 2 3 = 8, 2 6 = 64 and 2 11 = 2048. [12] The first 3 powers of 2 with all but last digit odd is 2 4 = 16, 2 5 = 32 and 2 9 = 512. The next such power of 2 of form 2 n should have n of at least 6 digits.
One could extend the notation to negative indices (n ≥ -2) in such a way as to agree with the entire hyperoperation sequence, except for the lag in the indexing: H n ( a , b ) = a [ n ] b = a ↑ n − 2 b for n ≥ 0. {\displaystyle H_{n}(a,b)=a[n]b=a\uparrow ^{n-2}b{\text{ for }}n\geq 0.}
On the other hand, the function / cannot be continuously extended, because the function approaches as approaches 0 from below, and + as approaches 0 from above, i.e., the function not converging to the same value as its independent variable approaching to the same domain element from both the positive and negative value sides.
In Boolean algebra, a monotonic function is one such that for all a i and b i in {0,1}, if a 1 ≤ b 1, a 2 ≤ b 2, ..., a n ≤ b n (i.e. the Cartesian product {0, 1} n is ordered coordinatewise), then f(a 1, ..., a n) ≤ f(b 1, ..., b n). In other words, a Boolean function is monotonic if, for every combination of inputs, switching one of ...
For each integer n > 2, the function n x is defined and increasing for x ≥ 1, and n 1 = 1, so that the n th super-root of x, , exists for x ≥ 1. However, if the linear approximation above is used, then = + if −1 < y ≤ 0, so + cannot exist.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
For n equal to 2 this is called the principal square root and the n is omitted. The nth root can also be represented using exponentiation as x 1/n. For even values of n, positive numbers also have a negative nth root, while negative numbers do not have a real nth root. For odd values of n, every negative number x has a real negative nth root.