enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    Powers of 2 appear in set theory, since a set with n members has a power set, the set of all of its subsets, which has 2 n members. Integer powers of 2 are important in computer science. The positive integer powers 2 n give the number of possible values for an n-bit integer binary number; for example, a byte may take 2 8 = 256 different values.

  3. Power of two - Wikipedia

    en.wikipedia.org/wiki/Power_of_two

    The only known powers of 2 with all digits even are 2 1 = 2, 2 2 = 4, 2 3 = 8, 2 6 = 64 and 2 11 = 2048. [12] The first 3 powers of 2 with all but last digit odd is 2 4 = 16, 2 5 = 32 and 2 9 = 512. The next such power of 2 of form 2 n should have n of at least 6 digits.

  4. Knuth's up-arrow notation - Wikipedia

    en.wikipedia.org/wiki/Knuth's_up-arrow_notation

    One could extend the notation to negative indices (n ≥ -2) in such a way as to agree with the entire hyperoperation sequence, except for the lag in the indexing: H n ( a , b ) = a [ n ] b = a ↑ n2 b for n ≥ 0. {\displaystyle H_{n}(a,b)=a[n]b=a\uparrow ^{n-2}b{\text{ for }}n\geq 0.}

  5. Extended real number line - Wikipedia

    en.wikipedia.org/wiki/Extended_real_number_line

    On the other hand, the function / cannot be continuously extended, because the function approaches as approaches 0 from below, and + as approaches 0 from above, i.e., the function not converging to the same value as its independent variable approaching to the same domain element from both the positive and negative value sides.

  6. Monotonic function - Wikipedia

    en.wikipedia.org/wiki/Monotonic_function

    In Boolean algebra, a monotonic function is one such that for all a i and b i in {0,1}, if a 1 ≤ b 1, a 2 ≤ b 2, ..., a n ≤ b n (i.e. the Cartesian product {0, 1} n is ordered coordinatewise), then f(a 1, ..., a n) ≤ f(b 1, ..., b n). In other words, a Boolean function is monotonic if, for every combination of inputs, switching one of ...

  7. Tetration - Wikipedia

    en.wikipedia.org/wiki/Tetration

    For each integer n > 2, the function n x is defined and increasing for x ≥ 1, and n 1 = 1, so that the n th super-root of x, , exists for x ≥ 1. However, if the linear approximation above is used, then = + if −1 < y ≤ 0, so + cannot exist.

  8. AOL Mail

    mail.aol.com/?rp=webmail-std/en-us/basic

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. nth root - Wikipedia

    en.wikipedia.org/wiki/Nth_root

    For n equal to 2 this is called the principal square root and the n is omitted. The nth root can also be represented using exponentiation as x 1/n. For even values of n, positive numbers also have a negative nth root, while negative numbers do not have a real nth root. For odd values of n, every negative number x has a real negative nth root.

  1. Related searches 2 raise to negative 8 to infinity to positive n direction 9 to 15

    2 raise to negative 8 to infinity to positive n direction 9 to 15 minutes