Search results
Results from the WOW.Com Content Network
Telomerase, also called terminal transferase, [1] is a ribonucleoprotein that adds a species-dependent telomere repeat sequence to the 3' end of telomeres. A telomere is a region of repetitive sequences at each end of the chromosomes of most eukaryotes. Telomeres protect the end of the chromosome from DNA damage or from fusion with neighbouring ...
The average cell will divide between 50 and 70 times before cell death. As the cell divides the telomeres on the end of the chromosome get smaller. The Hayflick limit is the theoretical limit to the number of times a cell may divide until the telomere becomes so short that division is inhibited and the cell enters senescence.
Resolving the question of why cancer cells have short telomeres led to the development of a two-stage model for how cancer cells subvert telomeric regulation of the cell cycle. First, the DNA damage checkpoint must be inactivated to allow cells to continue dividing even when telomeres pass the critical length threshold.
Replication processes permit copying a single DNA double helix into two DNA helices, which are divided into the daughter cells at mitosis. The major enzymatic functions carried out at the replication fork are well conserved from prokaryotes to eukaryotes, but the replication machinery in eukaryotic DNA replication is a much larger complex ...
Shelterin (also called telosome) is a protein complex known to protect telomeres in many eukaryotes from DNA repair mechanisms, as well as to regulate telomerase activity. In mammals and other vertebrates, telomeric DNA consists of repeating double-stranded 5'-TTAGGG-3' (G-strand) sequences (2-15 kilobases in humans) along with the 3'-AATCCC-5' (C-strand) complement, ending with a 50-400 ...
The typical normal human fetal cell will divide between 50 and 70 times before experiencing senescence. As the cell divides, the telomeres on the ends of chromosomes shorten. The Hayflick limit is the limit on cell replication imposed by the shortening of telomeres with each division. This end stage is known as cellular senescence.
The two domains differ in sequence content and extent of homology to other chromosome ends, and they are often separated by a stretch of degenerate telomere repeats (TTAGGG) and an element called 'core X', which is found at all chromosome ends and contains an autonomously replicating sequence (ARS) and an ABF1 binding site.
On a larger scale, mitotic cell division can create progeny from multicellular organisms, such as plants that grow from cuttings. Mitotic cell division enables sexually reproducing organisms to develop from the one-celled zygote, which itself is produced by fusion of two gametes, each having been produced by meiotic cell division.