enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cylinder stress - Wikipedia

    en.wikipedia.org/wiki/Cylinder_stress

    For the thin-walled assumption to be valid, the vessel must have a wall thickness of no more than about one-tenth (often cited as Diameter / t > 20) of its radius. [4] This allows for treating the wall as a surface, and subsequently using the Young–Laplace equation for estimating the hoop stress created by an internal pressure on a thin-walled cylindrical pressure vessel:

  3. Barlow's formula - Wikipedia

    en.wikipedia.org/wiki/Barlow's_formula

    Barlow's formula (called "Kesselformel" [1] in German) relates the internal pressure that a pipe [2] can withstand to its dimensions and the strength of its material. This approximate formula is named after Peter Barlow, an English mathematician. [3] = Cylinder, where

  4. Engine displacement - Wikipedia

    en.wikipedia.org/wiki/Engine_displacement

    Engine displacement is the measure of the cylinder volume swept by all of the pistons of a piston engine, excluding the combustion chambers. [1] It is commonly used as an expression of an engine's size, and by extension as an indicator of the power (through mean effective pressure and rotational speed ) an engine might be capable of producing ...

  5. List of moments of inertia - Wikipedia

    en.wikipedia.org/wiki/List_of_moments_of_inertia

    The above formula is for the xy plane passing through the center of mass, which coincides with the geometric center of the cylinder. If the xy plane is at the base of the cylinder, i.e. offset by d = h 2 , {\displaystyle d={\frac {h}{2}},} then by the parallel axis theorem the following formula applies:

  6. Compression ratio - Wikipedia

    en.wikipedia.org/wiki/Compression_ratio

    Absolute cylinder pressure is used to calculate the dynamic compression ratio, using the following formula: = where is a polytropic value for the ratio of specific heats for the combustion gases at the temperatures present (this compensates for the temperature rise caused by compression, as well as heat lost to the cylinder)

  7. Piston motion equations - Wikipedia

    en.wikipedia.org/wiki/Piston_motion_equations

    piston pin velocity (upward from crank center along cylinder bore centerline) a {\displaystyle a} piston pin acceleration (upward from crank center along cylinder bore centerline) ω {\displaystyle \omega } crank angular velocity (in the same direction/sense as crank angle A {\displaystyle A} )

  8. Reynolds number - Wikipedia

    en.wikipedia.org/wiki/Reynolds_number

    The Reynolds number is the ratio of inertial forces to viscous forces within a fluid that is subjected to relative internal movement due to different fluid velocities. A region where these forces change behavior is known as a boundary layer, such as the bounding surface in the interior of a pipe.

  9. Hydraulic diameter - Wikipedia

    en.wikipedia.org/wiki/Hydraulic_diameter

    The Manning formula contains a quantity called the hydraulic radius. Despite what the name may suggest, the hydraulic diameter is not twice the hydraulic radius, but four times larger. Hydraulic diameter is mainly used for calculations involving turbulent flow.