Search results
Results from the WOW.Com Content Network
The characteristic equation of a third-order constant coefficients or Cauchy–Euler (equidimensional variable coefficients) linear differential equation or difference equation is a cubic equation. Intersection points of cubic Bézier curve and straight line can be computed using direct cubic equation representing Bézier curve.
The derivative of a cubic function is a quadratic function. A cubic function with real coefficients has either one or three real roots (which may not be distinct); [1] all odd-degree polynomials with real coefficients have at least one real root. The graph of a cubic function always has a single inflection point.
For instance, the polynomial x 2 + 3x + 2 is an example of this type of trinomial with n = 1. The solution a 1 = −2 and a 2 = −1 of the above system gives the trinomial factorization: x 2 + 3x + 2 = (x + a 1)(x + a 2) = (x + 2)(x + 1). The same result can be provided by Ruffini's rule, but with a more complex and time-consuming process.
Let () be a polynomial equation, where P is a univariate polynomial of degree n. If one divides all coefficients of P by its leading coefficient c n , {\displaystyle c_{n},} one obtains a new polynomial equation that has the same solutions and consists to equate to zero a monic polynomial.
Because they have an odd degree, normal quintic functions appear similar to normal cubic functions when graphed, except they may possess one additional local maximum and one additional local minimum. The derivative of a quintic function is a quartic function. Setting g(x) = 0 and assuming a ≠ 0 produces a quintic equation of the form:
In mathematics, the degree of a polynomial is the highest of the degrees of the polynomial's monomials (individual terms) with non-zero coefficients. The degree of a term is the sum of the exponents of the variables that appear in it, and thus is a non-negative integer.
The twisted cubic is a projective algebraic variety.. Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics.Classically, an algebraic variety is defined as the set of solutions of a system of polynomial equations over the real or complex numbers.
Cubic plane curve (mathematics), a plane algebraic curve C defined by a cubic equation; Cubic reciprocity (mathematics - number theory), a theorem analogous to quadratic reciprocity; Cubic surface, an algebraic surface in three-dimensional space; Cubic zirconia, in geology, a mineral that is widely synthesized for use as a diamond simulacra