enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Displacement (geometry) - Wikipedia

    en.wikipedia.org/wiki/Displacement_(geometry)

    In geometry and mechanics, a displacement is a vector whose length is the shortest distance from the initial to the final position of a point P undergoing motion. [1] It quantifies both the distance and direction of the net or total motion along a straight line from the initial position to the final position of the point trajectory.

  3. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    They are often referred to as the SUVAT equations, where "SUVAT" is an acronym from the variables: s = displacement, u = initial velocity, v = final velocity, a = acceleration, t = time. [ 10 ] [ 11 ] In these variables, the equations of motion would be written

  4. Linear motion - Wikipedia

    en.wikipedia.org/wiki/Linear_motion

    [5] [6] If is the initial position of an object and is the final position, then mathematically the displacement is given by: = The equivalent of displacement in rotational motion is the angular displacement measured in radians. The displacement of an object cannot be greater than the distance because it is also a distance but the shortest one.

  5. Mean squared displacement - Wikipedia

    en.wikipedia.org/wiki/Mean_squared_displacement

    The differential equation above takes the form of 1D heat equation. The one-dimensional PDF below is the Green's function of heat equation (also known as Heat kernel in mathematics): P ( x , t ) = 1 4 π D t exp ⁡ ( − ( x − x 0 ) 2 4 D t ) . {\displaystyle P(x,t)={\frac {1}{\sqrt {4\pi Dt}}}\exp \left(-{\frac {(x-x_{0})^{2}}{4Dt}}\right).}

  6. Fourth, fifth, and sixth derivatives of position - Wikipedia

    en.wikipedia.org/wiki/Fourth,_fifth,_and_sixth...

    Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.

  7. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    A set of equations describing the trajectories of objects subject to a constant gravitational force under normal Earth-bound conditions. Assuming constant acceleration g due to Earth's gravity, Newton's law of universal gravitation simplifies to F = mg , where F is the force exerted on a mass m by the Earth's gravitational field of strength g .

  8. Displacement - Wikipedia

    en.wikipedia.org/wiki/Displacement

    Displacement (geometry), is the difference between the final and initial position of a point trajectory (for instance, the center of mass of a moving object).The actual path covered to reach the final position is irrelevant.

  9. Tsiolkovsky rocket equation - Wikipedia

    en.wikipedia.org/wiki/Tsiolkovsky_rocket_equation

    A rocket's required mass ratio as a function of effective exhaust velocity ratio. The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the ...