Search results
Results from the WOW.Com Content Network
Thus, to Barcroft homeostasis was not only organized by the brain—homeostasis served the brain. [13] Homeostasis is an almost exclusively biological term, referring to the concepts described by Bernard and Cannon, concerning the constancy of the internal environment in which the cells of the body live and survive.
Fluid balance is an aspect of the homeostasis of organisms in which the amount of water in the organism needs to be controlled, via osmoregulation and behavior, such that the concentrations of electrolytes (salts in solution) in the various body fluids are kept within healthy ranges.
The HOMA model was originally designed as a special case of a more general structural (HOMA-CIGMA) model that includes the continuous infusion of glucose with model assessment (CIGMA) approach; both techniques use mathematical equations to describe the functioning of the major effector organs influencing glucose/insulin interactions.
Energy intake is measured by the amount of calories consumed from food and fluids. [1] Energy intake is modulated by hunger, which is primarily regulated by the hypothalamus, [1] and choice, which is determined by the sets of brain structures that are responsible for stimulus control (i.e., operant conditioning and classical conditioning) and cognitive control of eating behavior.
This page was last edited on 1 November 2018, at 00:54 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
Osmoregulation is the active regulation of the osmotic pressure of an organism's body fluids, detected by osmoreceptors, to maintain the homeostasis of the organism's water content; that is, it maintains the fluid balance and the concentration of electrolytes (salts in solution which in this case is represented by body fluid) to keep the body fluids from becoming too diluted or concentrated.
Acid–base homeostasis is the homeostatic regulation of the pH of the body's extracellular fluid (ECF). [1] The proper balance between the acids and bases (i.e. the pH) in the ECF is crucial for the normal physiology of the body—and for cellular metabolism . [ 1 ]
Homeorhesis, derived from the Greek for "similar flow", is a concept encompassing dynamical systems which return to a trajectory, as opposed to systems which return to a particular state, which is termed homeostasis.