Search results
Results from the WOW.Com Content Network
At high temperatures, the resistance of a metal increases linearly with temperature. As the temperature of a metal is reduced, the temperature dependence of resistivity follows a power law function of temperature. Mathematically the temperature dependence of the resistivity ρ of a metal can be approximated through the Bloch–Grüneisen ...
Another type of thermistor is a silistor (a thermally sensitive silicon resistor). Silistors employ silicon as the semiconductive component material. Unlike ceramic PTC thermistors, silistors have an almost linear resistance-temperature characteristic. [17] Silicon PTC thermistors have a much smaller drift than an NTC thermistor.
Consider a component such as a silicon transistor that is bolted to the metal frame of a piece of equipment. The transistor's manufacturer will specify parameters in the datasheet called the absolute thermal resistance from junction to case (symbol: R θ J C {\displaystyle R_{\theta {\rm {JC}}}} ), and the maximum allowable temperature of the ...
The thermal conductivity of a material is a measure of its ability to conduct heat.It is commonly denoted by , , or and is measured in W·m −1 ·K −1.. Heat transfer occurs at a lower rate in materials of low thermal conductivity than in materials of high thermal conductivity.
Therefore, many materials that produce acceptable values of include materials that have been alloyed or possess variable negative temperature coefficient (NTC), which occurs when a physical property (such as thermal conductivity or electrical resistivity) of a material lowers with increasing temperature, typically in a defined temperature range ...
Typical electron mobility at room temperature (300 K) in metals like gold, copper and silver is 30–50 cm 2 /(V⋅s). Carrier mobility in semiconductors is doping dependent. In silicon (Si) the electron mobility is of the order of 1,000, in germanium around 4,000, and in gallium arsenide up to 10,000 cm 2 /(V⋅s).
In microelectronic components such as transistors and ICs, the silicon material is normally a conductor because of doping, but it can easily be selectively transformed into a good insulator by the application of heat and oxygen. Oxidised silicon is quartz, i.e. silicon dioxide, the primary component of glass.
At a resonance frequency , called the plasma frequency, the dielectric function changes sign from negative to positive and real part of the dielectric function drops to zero. ω p = n e 2 ε 0 m {\displaystyle \omega _{\rm {p}}={\sqrt {\frac {ne^{2}}{\varepsilon _{0}m}}}} The plasma frequency represents a plasma oscillation resonance or plasmon .