enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hooke's law - Wikipedia

    en.wikipedia.org/wiki/Hooke's_law

    In physics, Hooke's law is an empirical law which states that the force (F) needed to extend or compress a spring by some distance (x) scales linearly with respect to that distance—that is, F s = kx, where k is a constant factor characteristic of the spring (i.e., its stiffness), and x is small compared to the total possible deformation of the spring.

  3. Constitutive equation - Wikipedia

    en.wikipedia.org/wiki/Constitutive_equation

    The first constitutive equation (constitutive law) was developed by Robert Hooke and is known as Hooke's law.It deals with the case of linear elastic materials.Following this discovery, this type of equation, often called a "stress-strain relation" in this example, but also called a "constitutive assumption" or an "equation of state" was commonly used.

  4. Lamé parameters - Wikipedia

    en.wikipedia.org/wiki/Lamé_parameters

    In homogeneous and isotropic materials, these define Hooke's law in 3D, = + ⁡ (), where σ is the stress tensor, ε the strain tensor, I the identity matrix and tr the trace function. Hooke's law may be written in terms of tensor components using index notation as σ i j = 2 μ ε i j + λ δ i j ε k k , {\displaystyle \sigma _{ij}=2\mu ...

  5. Deformation (physics) - Wikipedia

    en.wikipedia.org/wiki/Deformation_(physics)

    The relation between stress and strain (relative deformation) is expressed by constitutive equations, e.g., Hooke's law for linear elastic materials. Deformations which cease to exist after the stress field is removed are termed as elastic deformation. In this case, the continuum completely recovers its original configuration.

  6. Solid mechanics - Wikipedia

    en.wikipedia.org/wiki/Solid_mechanics

    These are basic models that describe how a solid responds to an applied stress: Elasticity – When an applied stress is removed, the material returns to its undeformed state. Linearly elastic materials, those that deform proportionally to the applied load, can be described by the linear elasticity equations such as Hooke's law.

  7. Anelasticity - Wikipedia

    en.wikipedia.org/wiki/Anelasticity

    These integral expressions are a generalization of Hooke's law in the case of anelasticity, and they show that material acts almost as they have a memory of their history of stress and strain. These two of equations imply that there is a relation between the J(t) and M(t).

  8. Viscoelasticity - Wikipedia

    en.wikipedia.org/wiki/Viscoelasticity

    The elastic components, as previously mentioned, can be modeled as springs of elastic constant E, given the formula: = where σ is the stress, E is the elastic modulus of the material, and ε is the strain that occurs under the given stress, similar to Hooke's law.

  9. Orthotropic material - Wikipedia

    en.wikipedia.org/wiki/Orthotropic_material

    In linear elasticity, the relation between stress and strain depend on the type of material under consideration. This relation is known as Hooke's law. For anisotropic materials Hooke's law can be written as [3] =