Search results
Results from the WOW.Com Content Network
Galactose (/ ɡ ə ˈ l æ k t oʊ s /, galacto-+ -ose, "milk sugar"), sometimes abbreviated Gal, is a monosaccharide sugar that is about as sweet as glucose, and about 65% as sweet as sucrose. [2] It is an aldohexose and a C-4 epimer of glucose. [3] A galactose molecule linked with a glucose molecule forms a lactose molecule.
After separation from glucose, galactose travels to the liver for conversion to glucose. [12] Galactokinase uses one molecule of ATP to phosphorylate galactose. [2] The phosphorylated galactose is then converted to glucose-1-phosphate, and then eventually glucose-6-phosphate, which can be broken down in glycolysis. [2]
Even if all three component sugars are the same (e.g., glucose), different bond combinations (regiochemistry) and stereochemistry (alpha- or beta-) result in trisaccharides that are diastereoisomers with different chemical and physical properties.
Chemical structure of stachyose. A tetrasaccharide is a carbohydrate which gives upon hydrolysis four molecules of the same or different monosaccharides. For example, stachyose upon hydrolysis gives one molecule each of glucose and fructose and two molecules of galactose. The general formula of a tetrasaccharide is typically C 24 H 42 O 21.
Lactose, or milk sugar, is a disaccharide composed of galactose and glucose and has the molecular formula C 12 H 22 O 11.Lactose makes up around 2–8% of milk (by mass). The name comes from lact (gen. lactis), the Latin word for milk, plus the suffix -ose used to name sugars.
The structural formula of a chemical compound is a graphic representation of the molecular structure (determined by structural chemistry methods), showing how the atoms are connected to one another. [1] The chemical bonding within the molecule is also shown, either explicitly or
α-Galactosidase ( EC 3.2.1.22, α-GAL, α-GAL A; systematic name α-D-galactoside galactohydrolase) is a glycoside hydrolase enzyme that catalyses the following reaction: [1] Hydrolysis of terminal, non-reducing α- D -galactose residues in α- D -galactosides, including galactose oligosaccharides, galactomannans and galactolipids
d -Glucose + 2 [NAD] + + 2 [ADP] + 2 [P] i 2 × Pyruvate 2 × + 2 [NADH] + 2 H + + 2 [ATP] + 2 H 2 O Glycolysis pathway overview The use of symbols in this equation makes it appear unbalanced with respect to oxygen atoms, hydrogen atoms, and charges. Atom balance is maintained by the two phosphate (P i) groups: Each exists in the form of a hydrogen phosphate anion, dissociating to contribute ...