Search results
Results from the WOW.Com Content Network
Other climatic factors such as average temperature and temperature range may also affect erosion, via their effects on vegetation and soil properties. In general, given similar vegetation and ecosystems, areas with more precipitation (especially high-intensity rainfall), more wind, or more storms are expected to have more erosion.
The speed or velocity of the water flow of the water column can also vary within a system and is subject to chaotic turbulence, though water velocity tends to be highest in the middle part of the stream channel (known as the thalveg). This turbulence results in divergences of flow from the mean downslope flow vector as typified by eddy currents.
Other climatic factors such as average temperature and temperature range may also affect erosion, via their effects on vegetation and soil properties. In general, given similar vegetation and ecosystems, areas with more precipitation (especially high-intensity rainfall), more wind, or more storms are expected to have more erosion.
A river bank can be divided into three zones: Toe zone, bank zone, and overbank area. The toe zone is the area which is most susceptible to erosion. [2] Because it is located in between the ordinary water level and the low water level, it is strongly affected by currents and erosional events. [2]
However the grains will continue to be transported even if the velocity falls below the entrainment velocity due to the reduced (or removed) friction between the grains and the river bed. Eventually the velocity will fall low enough for the grains to be deposited. This is shown by the Hjulström curve.
For example, chalk is made up partly of the microscopic calcium carbonate skeletons of marine plankton, the deposition of which induced chemical processes to deposit further calcium carbonate. Similarly, the formation of coal begins with the deposition of organic material, mainly from plants, in anaerobic conditions.
Typically, the reduced river velocity upstream can lead to increased siltation (deposition of fine particles of silt and clay on the river bottom) that reduces the water oxygen content and smothers invertebrate habitat and fish spawning sites. The oxygen content typically returns to normal once water has passed over the weir crest (although it ...
Rapids cause water aeration of the stream or river, resulting in better water quality. [2] For a rapid to form, a necessary condition is the presence of a gradient, which refers to the river or stream's downward slope. When a river has a larger gradient, the water flows downhill faster. [3] Gradients are typically measured in feet per mile. [4]