Search results
Results from the WOW.Com Content Network
Electroosmotic flow is caused by the Coulomb force induced by an electric field on net mobile electric charge in a solution. Because the chemical equilibrium between a solid surface and an electrolyte solution typically leads to the interface acquiring a net fixed electrical charge, a layer of mobile ions, known as an electrical double layer or Debye layer, forms in the region near the interface.
But it has been found that flow of sheath gas can cause suction effect near the capillary terminus, which lead to parabolic flow profile and, as a consequence, low separation efficiency. [3] Commonly used sheath liquid is 1:1 mixture of water-methanol (or isopropanol) with 0.1% acetic acid or formic acid. The system is more reliable and has ...
The resulting flow is termed electroosmotic flow. In CEC positive ions of the electrolyte added along with the analyte accumulate in the electrical double layer of the particles of the column packing on application of an electric field they move towards the cathode and drag the liquid mobile phase with them.
Electroosmotic pumps are fabricated from silica nanospheres [6] [7] or hydrophilic porous glass, the pumping mechanism is generated by an external electric field applied on an electric double layer (EDL), generates high pressures (e.g., more than 340 atm (34 MPa) at 12 kV applied potentials) and high flow rates (e.g., 40 ml/min at 100 V in a pumping structure less than 1 cm 3 in volume).
Capillary electrophoresis (CE) is a family of electrokinetic separation methods performed in submillimeter diameter capillaries and in micro- and nanofluidic channels.Very often, CE refers to capillary zone electrophoresis (CZE), but other electrophoretic techniques including capillary gel electrophoresis (CGE), capillary isoelectric focusing (CIEF), capillary isotachophoresis and micellar ...
The surface potential of the cell wall produces electro-osmotic flow. Since the electrophoresis chamber is a closed system, backward flow is produced at the center of the cell. Then the observed mobility or velocity from Eq. (7) is a result of the combination of osmotic flow and electrophoretic movement.
Electrophoresis is the basis for analytical techniques used in biochemistry and molecular biology to separate particles, molecules, or ions by size, charge, or binding affinity, either freely or through a supportive medium using a one-directional flow of electrical charge. [10] It is used extensively in DNA, RNA and protein analysis. [11]
The anionic character of the sulfate groups of SDS causes the surfactant and micelles to have electrophoretic mobility that is counter to the direction of the strong electroosmotic flow. As a result, the surfactant monomers and micelles migrate quite slowly, though their net movement is still toward the cathode . [ 3 ]