Search results
Results from the WOW.Com Content Network
Surface tension is an important factor in the phenomenon of capillarity. Surface tension has the dimension of force per unit length, or of energy per unit area. [4] The two are equivalent, but when referring to energy per unit of area, it is common to use the term surface energy, which is a more general term in the sense that it applies also to ...
As striders increase in size, their legs become proportionately longer, with Gigantometra gigas having a length of over 20 cm requiring a surface tension force of about 40 millinewtons. Water striders generate thrust by shedding vortices in the water: a series of U-shaped vortex filaments is created during the power stroke.
Water potential is the potential energy of water per unit volume relative to pure water in reference conditions. Water potential quantifies the tendency of water to move from one area to another due to osmosis, gravity, mechanical pressure and matrix effects such as capillary action (which is caused by surface tension).
The surface is utilised by a wide range of species, from various fish and cetaceans, to species that ride on ocean debris (termed rafters). [7] [8] [9] Most prominently, the surface is home to a unique community of free-living organisms, termed neuston (from the Greek word υεω, which
In physics, the Young–Laplace equation (/ l ə ˈ p l ɑː s /) is an algebraic equation that describes the capillary pressure difference sustained across the interface between two static fluids, such as water and air, due to the phenomenon of surface tension or wall tension, although use of the latter is only applicable if assuming that the wall is very thin.
Surface tension is one of the areas of interest in biomimetics research. Surface tension forces will only begin to dominate gravitational forces below length scales on the order of the fluid's capillary length, which for water is about 2 millimeters. Because of this scaling, biomimetic devices that utilize surface tension will generally be very ...
A: The bottom of a concave meniscus. B: The top of a convex meniscus. In physics (particularly fluid statics), the meniscus (pl.: menisci, from Greek 'crescent') is the curve in the upper surface of a liquid close to the surface of the container or another object, produced by surface tension.
Bowden and Tabor were the first to emphasize the importance of surface roughness for bodies in contact. [10] [11] Through investigation of the surface roughness, the true contact area between friction partners is found to be less than the apparent contact area. Such understanding also drastically changed the direction of undertakings in tribology.