Search results
Results from the WOW.Com Content Network
A graph with a loop on vertex 1. In graph theory, a loop (also called a self-loop or a buckle) is an edge that connects a vertex to itself. A simple graph contains no loops. Depending on the context, a graph or a multigraph may be defined so as to either allow or disallow the presence of loops (often in concert with allowing or disallowing ...
Line chart showing the population of the town of Pushkin, Saint Petersburg from 1800 to 2010, measured at various intervals. A line chart or line graph, also known as curve chart, [1] is a type of chart that displays information as a series of data points called 'markers' connected by straight line segments. [2]
quasi-line graph A quasi-line graph or locally co-bipartite graph is a graph in which the open neighborhood of every vertex can be partitioned into two cliques. These graphs are always claw-free and they include as a special case the line graphs. They are used in the structure theory of claw-free graphs. quasi-random graph sequence
In graph theory, the girth of an undirected graph is the length of a shortest cycle contained in the graph. [1] If the graph does not contain any cycles (that is, it is a forest), its girth is defined to be infinity. [2] For example, a 4-cycle (square) has girth 4. A grid has girth 4 as well, and a triangular mesh has girth 3.
An edge dominating set for G is a dominating set for its line graph L(G) and vice versa. Any maximal matching is always an edge dominating set. Figures (b) and (d) are examples of maximal matchings. Furthermore, the size of a minimum edge dominating set equals the size of a minimum maximal matching. A minimum maximal matching is a minimum edge ...
Forest, a cycle-free graph; Line perfect graph, a graph in which every odd cycle is a triangle; Perfect graph, a graph with no induced cycles or their complements of odd length greater than three; Pseudoforest, a graph in which each connected component has at most one cycle; Strangulated graph, a graph in which every peripheral cycle is a triangle
The odds are high you’ve had a cough before in your life, but each time can throw you for a loop. Even though you’ve been through this, it can be hard to know when to see a doctor for a cough ...
In this example, there is a true dependence between the j iteration of statement S1 and the j+1th statement of S1. This can be represented as S1[i,j] →T S1[i,j+1] The iteration space traversal graph and the loop carried dependence graph is: Iteration Space Traversal Graph: Loop Carried Dependence Graph: