enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Inverse trigonometric functions - Wikipedia

    en.wikipedia.org/.../Inverse_trigonometric_functions

    Similar to the sine and cosine functions, the inverse trigonometric functions can also be calculated using power series, as follows. For arcsine, the series can be derived by expanding its derivative, 1 1 − z 2 {\textstyle {\tfrac {1}{\sqrt {1-z^{2}}}}} , as a binomial series , and integrating term by term (using the integral definition as ...

  3. Pythagorean trigonometric identity - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_trigonometric...

    Similar right triangles illustrating the tangent and secant trigonometric functions Trigonometric functions and their reciprocals on the unit circle. The Pythagorean theorem applied to the blue triangle shows the identity 1 + cot 2 θ = csc 2 θ, and applied to the red triangle shows that 1 + tan 2 θ = sec 2 θ.

  4. Small-angle approximation - Wikipedia

    en.wikipedia.org/wiki/Small-angle_approximation

    The opposite leg, O, is approximately equal to the length of the blue arc, s. Gathering facts from geometry, s = Aθ , from trigonometry, sin θ = ⁠ O / H ⁠ and tan θ = ⁠ O / A ⁠ , and from the picture, O ≈ s and H ≈ A leads to: sin ⁡ θ = O H ≈ O A = tan ⁡ θ = O A ≈ s A = A θ A = θ . {\displaystyle \sin \theta ={\frac ...

  5. Trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_functions

    The sine and the cosine functions, for example, are used to describe simple harmonic motion, which models many natural phenomena, such as the movement of a mass attached to a spring and, for small angles, the pendular motion of a mass hanging by a string. The sine and cosine functions are one-dimensional projections of uniform circular motion.

  6. Proofs of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_trigonometric...

    For example, the sine of angle θ is defined as being the length of the opposite side divided by the length of the hypotenuse. The six trigonometric functions are defined for every real number, except, for some of them, for angles that differ from 0 by a multiple of the right angle (90°). Referring to the diagram at the right, the six ...

  7. Negative frequency - Wikipedia

    en.wikipedia.org/wiki/Negative_frequency

    A negative frequency causes the sin function (violet) to lead the cos (red) by 1/4 cycle. The ambiguity is resolved when the cosine and sine operators can be observed simultaneously, because cos( ωt + θ ) leads sin( ωt + θ ) by 1 ⁄ 4 cycle (i.e. π ⁄ 2 radians) when ω > 0 , and lags by 1 ⁄ 4 cycle when ω < 0 .

  8. Trigonometry - Wikipedia

    en.wikipedia.org/wiki/Trigonometry

    In the following definitions, the hypotenuse is the side opposite to the 90-degree angle in a right triangle; it is the longest side of the triangle and one of the two sides adjacent to angle A. The adjacent leg is the other side that is adjacent to angle A. The opposite side is the side that is opposite to angle A.

  9. Rose (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Rose_(mathematics)

    Graphs of roses are composed of petals.A petal is the shape formed by the graph of a half-cycle of the sinusoid that specifies the rose. (A cycle is a portion of a sinusoid that is one period T = ⁠ 2π / k ⁠ long and consists of a positive half-cycle, the continuous set of points where r ≥ 0 and is ⁠ T / 2 ⁠ = ⁠ π / k ⁠ long, and a negative half-cycle is the other half where r ...