Search results
Results from the WOW.Com Content Network
If a term is odd, the next term is 3 times the previous term plus 1. The conjecture is that these sequences always reach 1, no matter which positive integer is chosen to start the sequence. The conjecture has been shown to hold for all positive integers up to 2.95 × 10 20, but no general proof has been found.
The graph of the logarithm to base 2 crosses the x axis (horizontal axis) at 1 and passes through the points with coordinates (2, 1), (4, 2), and (8, 3). For example, log 2 (8) = 3, because 2 3 = 8. The graph gets arbitrarily close to the y axis, but does not meet or intersect it.
Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.
An example of using Newton–Raphson method to solve numerically the equation f(x) = 0. In mathematics, to solve an equation is to find its solutions, which are the values (numbers, functions, sets, etc.) that fulfill the condition stated by the equation, consisting generally of two expressions related by an equals sign.
For example, the polynomial x 2 y 2 + 3x 3 + 4y has degree 4, the same degree as the term x 2 y 2. However, a polynomial in variables x and y , is a polynomial in x with coefficients which are polynomials in y , and also a polynomial in y with coefficients which are polynomials in x .
graph intersection: G 1 ∩ G 2 = (V 1 ∩ V 2, E 1 ∩ E 2); [1] graph join: . Graph with all the edges that connect the vertices of the first graph with the vertices of the second graph. It is a commutative operation (for unlabelled graphs); [2] graph products based on the cartesian product of the vertex sets:
This guess is a good choice since it produces an integer value. However, 4 is not the solution of the original equation, as it gives a value which is three times too small. To compensate, multiply x (currently set to 4) by 3 and substitute again to get 12 + 12 / 4 = 15, verifying that the solution is x = 12.
3-dimensional matchings. (a) Input T. (b)–(c) Solutions. In the mathematical discipline of graph theory, a 3-dimensional matching is a generalization of bipartite matching (also known as 2-dimensional matching) to 3-partite hypergraphs, which consist of hyperedges each of which contains 3 vertices (instead of edges containing 2 vertices in a usual graph).