enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Table of specific heat capacities - Wikipedia

    en.wikipedia.org/wiki/Table_of_specific_heat...

    The specific heat of the human body calculated from the measured values of individual tissues is 2.98 kJ · kg−1 · °C−1. This is 17% lower than the earlier wider used one based on non measured values of 3.47 kJ · kg−1· °C−1. The contribution of the muscle to the specific heat of the body is approximately 47%, and the contribution ...

  3. Heat capacity ratio - Wikipedia

    en.wikipedia.org/wiki/Heat_capacity_ratio

    1.365. In thermal physics and thermodynamics, the heat capacity ratio, also known as the adiabatic index, the ratio of specific heats, or Laplace's coefficient, is the ratio of the heat capacity at constant pressure (CP) to heat capacity at constant volume (CV). It is sometimes also known as the isentropic expansion factor and is denoted by γ ...

  4. Newton's law of cooling - Wikipedia

    en.wikipedia.org/wiki/Newton's_law_of_cooling

    Physical law relating heat loss to temperature difference. In the study of heat transfer, Newton's law of cooling is a physical law which states that the rate of heat loss of a body is directly proportional to the difference in the temperatures between the body and its environment. The law is frequently qualified to include the condition that ...

  5. Table of thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Table_of_thermodynamic...

    m = mass of each molecule (all molecules are identical in kinetic theory), γ (p) = Lorentz factor as function of momentum (see below) Ratio of thermal to rest mass-energy of each molecule: θ = k B T / m c 2 {\displaystyle \theta =k_ {\text {B}}T/mc^ {2}} K2 is the modified Bessel function of the second kind.

  6. Thermal diffusivity - Wikipedia

    en.wikipedia.org/wiki/Thermal_diffusivity

    Thermal diffusivity. In heat transfer analysis, thermal diffusivity is the thermal conductivity divided by density and specific heat capacity at constant pressure. [1] It is a measure of the rate of heat transfer inside a material. It has units of m 2 /s. Thermal diffusivity is usually denoted by lowercase alpha (α), but a, h, κ (kappa), [2 ...

  7. Heat transfer coefficient - Wikipedia

    en.wikipedia.org/wiki/Heat_transfer_coefficient

    In thermodynamics, the heat transfer coefficient or film coefficient, or film effectiveness, is the proportionality constant between the heat flux and the thermodynamic driving force for the flow of heat (i.e., the temperature difference, ΔT ). It is used in calculating the heat transfer, typically by convection or phase transition between a ...

  8. Heat capacity rate - Wikipedia

    en.wikipedia.org/wiki/Heat_capacity_rate

    The heat capacity rate is heat transfer terminology used in thermodynamics and different forms of engineering denoting the quantity of heat a flowing fluid of a certain mass flow rate is able to absorb or release per unit temperature change per unit time. [1][2][3] It is typically denoted as C, listed from empirical data experimentally ...

  9. Thermal conductance and resistance - Wikipedia

    en.wikipedia.org/wiki/Thermal_conductance_and...

    It quantifies how effectively a material can resist the transfer of heat through conduction, convection, and radiation. It has the units square metre kelvins per watt (m 2 ⋅K/W) in SI units or square foot degree Fahrenheit–hours per British thermal unit (ft 2 ⋅°F⋅h/Btu) in imperial units. The higher the thermal insulance, the better a ...