Search results
Results from the WOW.Com Content Network
A decomposition paradigm in computer programming is a strategy for organizing a program as a number of parts, and usually implies a specific way to organize a program text. Typically the aim of using a decomposition paradigm is to optimize some metric related to program complexity, for example a program's modularity or its maintainability.
SimDec, or Simulation decomposition, is a hybrid uncertainty and sensitivity analysis method, for visually examining the relationships between the output and input variables of a computational model. SimDec maps multivariable scenarios onto the distribution of the model output. [ 1 ]
In the FFBD method, the functions are organized and depicted by their logical order of execution. Each function is shown with respect to its logical relationship to the execution and completion of other functions. A node labeled with the function name depicts each function. Arrows from left to right show the order of execution of the functions.
The main use of POD is to decompose a physical field (like pressure, temperature in fluid dynamics or stress and deformation in structural analysis), depending on the different variables that influence its physical behaviors. As its name hints, it's operating an Orthogonal Decomposition along with the Principal Components of the field.
Decomposition method is a generic term for solutions of various problems and design of algorithms in which the basic idea is to decompose the problem into subproblems. The term may specifically refer to: Decomposition method (constraint satisfaction) in constraint satisfaction
In computer programming, a function (also procedure, method, subroutine, routine, or subprogram) is a callable unit [1] of software logic that has a well-defined interface and behavior and can be invoked multiple times. Callable units provide a powerful programming tool. [2]
Decomposition methods create a problem that is easy to solve from an arbitrary one. Each variable of this new problem is associated to a set of original variables; its domain contains tuples of values for the variables in the associated set; in particular, these are the tuples that satisfy a set of constraints over these variables.
In order to use Dantzig–Wolfe decomposition, the constraint matrix of the linear program must have a specific form. A set of constraints must be identified as "connecting", "coupling", or "complicating" constraints wherein many of the variables contained in the constraints have non-zero coefficients.