Search results
Results from the WOW.Com Content Network
A representation of a chordal graph as an intersection of subtrees forms a tree decomposition of the graph, with treewidth equal to one less than the size of the largest clique in the graph; the tree decomposition of any graph G can be viewed in this way as a representation of G as a subgraph of a chordal graph.
Chord diagrams are conventionally visualized by arranging the objects in their order around a circle, and drawing the pairs of the matching as chords of the circle. The number of different chord diagrams that may be given for a set of 2 n {\displaystyle 2n} cyclically ordered objects is the double factorial ( 2 n − 1 ) ! ! {\displaystyle (2n ...
Every cycle of length at least 6 has a chord connecting two vertices that are a distance > 1 apart from each other in the cycle.. In the mathematical area of graph theory, a chordal bipartite graph is a bipartite graph B = (X,Y,E) in which every cycle of length at least 6 in B has a chord, i.e., an edge that connects two vertices that are a distance > 1 apart from each other in the cycle.
Bipartite graph, a graph without odd cycles (cycles with an odd number of vertices) Cactus graph, a graph in which every nontrivial biconnected component is a cycle; Cycle graph, a graph that consists of a single cycle; Chordal graph, a graph in which every induced cycle is a triangle; Directed acyclic graph, a directed graph with no directed ...
A chord diagram is a graphical method of displaying the inter-relationships between data in a matrix. The data are arranged radially around a circle with the relationships between the data points typically drawn as arcs connecting the data. The format can be aesthetically pleasing, making it a popular choice in the world of data visualization.
Equal chords are subtended by equal angles from the center of the circle. A chord that passes through the center of a circle is called a diameter and is the longest chord of that specific circle. If the line extensions (secant lines) of chords AB and CD intersect at a point P, then their lengths satisfy AP·PB = CP·PD (power of a point theorem).
A leaf power is a graph that is a k-leaf power for some k. Since powers of strongly chordal graphs are strongly chordal and trees are strongly chordal, it follows that leaf powers are strongly chordal. They form a proper subclass of strongly chordal graphs, which in turn includes the cluster graphs as the 2-leaf powers. [11]
The value of the two products in the chord theorem depends only on the distance of the intersection point S from the circle's center and is called the absolute value of the power of S; more precisely, it can be stated that: | | | | = | | | | =, where r is the radius of the circle, and d is the distance between the center of the circle and the ...