Search results
Results from the WOW.Com Content Network
The Hermite interpolation problem is a problem of linear algebra that has the coefficients of the interpolation polynomial as unknown variables and a confluent Vandermonde matrix as its matrix. [3] The general methods of linear algebra, and specific methods for confluent Vandermonde matrices are often used for computing the interpolation ...
The four Hermite basis functions. The interpolant in each subinterval is a linear combination of these four functions. On the unit interval [,], given a starting point at = and an ending point at = with starting tangent at = and ending tangent at =, the polynomial can be defined by = (+) + (+) + (+) + (), where t ∈ [0, 1].
This eigenvalue problem is called the Hermite equation, although the term is also used for the closely related equation ″ ′ =. whose solution is uniquely given in terms of physicist's Hermite polynomials in the form () = (), where denotes a constant, after imposing the boundary condition that u should be polynomially bounded at infinity.
For example, the Hermite spline is a spline that is expressed using Hermite polynomials to represent each of the individual polynomial pieces. These are most often used with n = 3 ; that is, as Cubic Hermite splines .
Smoothstep is a family of sigmoid-like interpolation and clamping functions commonly used in computer graphics, [1] [2] video game engines, [3] and machine learning. [ 4 ] The function depends on three parameters, the input x , the "left edge" and the "right edge", with the left edge being assumed smaller than the right edge.
Example showing non-monotone cubic interpolation (in red) and monotone cubic interpolation (in blue) of a monotone data set. Monotone interpolation can be accomplished using cubic Hermite spline with the tangents m i {\displaystyle m_{i}} modified to ensure the monotonicity of the resulting Hermite spline.
Hermite polynomials; Hermite interpolation; References This page was last edited on 22 November 2024, at 15:39 (UTC). Text is available under the ...
The original use of interpolation polynomials was to approximate values of important transcendental functions such as natural logarithm and trigonometric functions.Starting with a few accurately computed data points, the corresponding interpolation polynomial will approximate the function at an arbitrary nearby point.