Search results
Results from the WOW.Com Content Network
Thrust levers in a Boeing 747 Classic. The center and rear levers are used during flight, while the forward levers control reverse thrust.. Thrust levers or throttle levers are found in the cockpit of aircraft, and are used by the pilot, copilot, flight engineer, or autopilot to control the thrust output of the aircraft's engines, by controlling the fuel flow to those engines. [1]
Thrust lever or throttle, which controls engine speed or thrust for powered aircraft. The control yokes also vary greatly among aircraft. There are yokes where roll is controlled by rotating the yoke clockwise/counterclockwise (like steering a car) and pitch is controlled by moving the control column towards or away from the pilot, but in ...
Diagram of a typical gas turbine jet engine. Air is compressed by the compressor blades as it enters the engine, and it is mixed and burned with fuel in the combustion section. The hot exhaust gases provide forward thrust and turn the turbines which drive the compressor blades. 1. Intake 2. Low pressure compression 3. High pressure compression ...
To increase or decrease overall lift requires that the controls alter the angle of attack for all blades collectively by equal amounts at the same time, resulting in ascent, descent, acceleration and deceleration. A typical helicopter has three flight control inputs: the cyclic stick, the collective lever, and the anti-torque pedals. [2]
Thrust levers of an A320 set to the autothrust position during cruise flight. An autothrottle (automatic throttle, also known as autothrust, A/T or A/THR) is a system that allows a pilot to control the power setting of an aircraft's engines by specifying a desired flight characteristic, rather than manually controlling the fuel flow.
Possible elements of a video game joystick: 1. stick, 2. base, 3. trigger, 4. extra buttons, 5. autofire switch, 6. throttle, 7. hat switch (POV hat), 8. suction cups. A joystick, sometimes called a flight stick, is an input device consisting of a stick that pivots on a base and reports its angle or direction to the device it is controlling.
Simple approximation for designing Ackermann geometry. A simple approximation to perfect Ackermann steering geometry may be generated by moving the steering pivot points [clarification needed] inward so as to lie on a line drawn between the steering kingpins, which is the pivot point, and the centre of the rear axle. [3]
In contrast, a propeller set for good cruise performance may stall at low speeds, because the angle of attack is too high. A propeller with adjustable blade angle is more efficient over a range of conditions. A propeller with variable pitch can have a nearly constant efficiency over a range of airspeeds. [1]