enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Category:Normed spaces - Wikipedia

    en.wikipedia.org/wiki/Category:Normed_spaces

    Download QR code; Print/export Download as PDF; Printable version; In other projects Wikimedia Commons; ... Pages in category "Normed spaces"

  3. Riesz's lemma - Wikipedia

    en.wikipedia.org/wiki/Riesz's_lemma

    However, every finite dimensional normed space is a reflexive Banach space, so Riesz’s lemma does holds for = when the normed space is finite-dimensional, as will now be shown. When the dimension of X {\displaystyle X} is finite then the closed unit ball B ⊆ X {\displaystyle B\subseteq X} is compact.

  4. Locally convex topological vector space - Wikipedia

    en.wikipedia.org/wiki/Locally_convex_topological...

    If is a topological vector space and if this convex absorbing subset is also a bounded subset of , then the absorbing disk := | | = will also be bounded, in which case will be a norm and (,) will form what is known as an auxiliary normed space. If this normed space is a Banach space then is called a Banach disk.

  5. Quotient of subspace theorem - Wikipedia

    en.wikipedia.org/wiki/Quotient_of_subspace_theorem

    In mathematics, the quotient of subspace theorem is an important property of finite-dimensional normed spaces, discovered by Vitali Milman. [1] Let (X, ||·||) be an N-dimensional normed space. There exist subspaces Z ⊂ Y ⊂ X such that the following holds:

  6. Normed vector space - Wikipedia

    en.wikipedia.org/wiki/Normed_vector_space

    Every normed vector space can be "uniquely extended" to a Banach space, which makes normed spaces intimately related to Banach spaces. Every Banach space is a normed space but converse is not true. For example, the set of the finite sequences of real numbers can be normed with the Euclidean norm , but it is not complete for this norm.

  7. Lp space - Wikipedia

    en.wikipedia.org/wiki/Lp_space

    In mathematics, the L p spaces are function spaces defined using a natural generalization of the p-norm for finite-dimensional vector spaces.They are sometimes called Lebesgue spaces, named after Henri Lebesgue (Dunford & Schwartz 1958, III.3), although according to the Bourbaki group (Bourbaki 1987) they were first introduced by Frigyes Riesz ().

  8. Uniformly smooth space - Wikipedia

    en.wikipedia.org/wiki/Uniformly_smooth_space

    As a space is super-reflexive if and only if its dual is super-reflexive, it follows that the class of Banach spaces that admit an equivalent uniformly convex norm coincides with the class of spaces that admit an equivalent uniformly smooth norm.

  9. Metric space - Wikipedia

    en.wikipedia.org/wiki/Metric_space

    Infinite-dimensional normed vector spaces, particularly spaces of functions, are studied in functional analysis. Completeness is particularly important in this context: a complete normed vector space is known as a Banach space. An unusual property of normed vector spaces is that linear transformations between them are continuous if and only if ...