Search results
Results from the WOW.Com Content Network
In game theory, Zermelo's theorem is a theorem about finite two-person games of perfect information in which the players move alternately and in which chance does not affect the decision making process. It says that if the game cannot end in a draw, then one of the two players must have a winning strategy (i.e. can force a win).
Algorithmic game theory (AGT) is an area in the intersection of game theory and computer science, with the objective of understanding and design of algorithms in strategic environments. Typically, in Algorithmic Game Theory problems, the input to a given algorithm is distributed among many players who have a personal interest in the output.
A solved game is a game whose outcome (win, lose or draw) can be correctly predicted from any position, assuming that both players play perfectly.This concept is usually applied to abstract strategy games, and especially to games with full information and no element of chance; solving such a game may use combinatorial game theory or computer assistance.
An animated pedagogical example showing the plain negamax algorithm (that is, without alpha–beta pruning). The person performing the game tree search is considered to be the one that has to move first from the current state of the game (player in this case) NegaMax operates on the same game trees as those used with the minimax search ...
A gambler has $2, she is allowed to play a game of chance 4 times and her goal is to maximize her probability of ending up with a least $6. If the gambler bets $ on a play of the game, then with probability 0.4 she wins the game, recoup the initial bet, and she increases her capital position by $; with probability 0.6, she loses the bet amount $; all plays are pairwise independent.
The algorithm will determine, for any instance of the problem, whether a stable matching exists, and if so, will find such a matching. Irving's algorithm has O(n 2) complexity, provided suitable data structures are used to implement the necessary manipulation of the preference lists and identification of rotations.
In game theory terms, an expectiminimax tree is the game tree of an extensive-form game of perfect, but incomplete information. In the traditional minimax method, the levels of the tree alternate from max to min until the depth limit of the tree has been reached. In an expectiminimax tree, the "chance" nodes are interleaved with the max and min ...
To better understand the game tree, it can be thought of as a technique for analyzing adversarial games, which determine the actions that player takes to win the game. In game theory, a game tree is a directed graph whose nodes are positions in a game (e.g., the arrangement of the pieces in a board game) and whose edges are moves (e.g., to move ...