Search results
Results from the WOW.Com Content Network
In chemistry, the molar mass (M) (sometimes called molecular weight or formula weight, but see related quantities for usage) of a chemical compound is defined as the ratio between the mass and the amount of substance (measured in moles) of any sample of the compound. [1] The molar mass is a bulk, not molecular, property of a substance.
How much gas is present could be specified by giving the mass instead of the chemical amount of gas. Therefore, an alternative form of the ideal gas law may be useful. The chemical amount, n (in moles), is equal to total mass of the gas (m) (in kilograms) divided by the molar mass, M (in kilograms per mole): =.
An example batch calculation may be demonstrated here. The desired glass composition in wt% is: 67 SiO 2, 12 Na 2 O, 10 CaO, 5 Al 2 O 3, 1 K 2 O, 2 MgO, 3 B 2 O 3, and as raw materials are used sand, trona, lime, albite, orthoclase, dolomite, and borax. The formulas and molar masses of the glass and batch components are listed in the following ...
In this section our central macroscopic variables and parameters and their units are temperature [K], pressure [bar], molar mass [g/mol], low density (low pressure or dilute) gas viscosity [μP]. It is, however, common in the industry to use another unit for liquid and high density gas viscosity η {\displaystyle \eta } [cP].
Raoult's law (/ ˈ r ɑː uː l z / law) is a relation of physical chemistry, with implications in thermodynamics.Proposed by French chemist François-Marie Raoult in 1887, [1] [2] it states that the partial pressure of each component of an ideal mixture of liquids is equal to the vapor pressure of the pure component (liquid or solid) multiplied by its mole fraction in the mixture.
Each element has an atomic mass, and considering molecules as collections of atoms, compounds have a definite molecular mass, which when expressed in daltons is numerically equal to the molar mass in g/mol. By definition, the atomic mass of carbon-12 is 12 Da, giving a molar mass of 12 g/mol.
M is the molar mass of the solvent. T b is boiling point of the pure solvent in kelvin. ΔH vap is the molar enthalpy of vaporization of the solvent. Through the procedure called ebullioscopy, a known constant can be used to calculate an unknown molar mass. The term ebullioscopy means "boiling measurement" in Latin.
Using mass and enthalpy balances in addition to vapor-liquid equilibrium data and enthalpy-concentration data, operating lines can be constructed using the Ponchon–Savarit method. [ 5 ] If the mixture can form an azeotrope , its vapor-liquid equilibrium line will cross the x = y line, preventing further separation no matter the number of ...