enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Long short-term memory - Wikipedia

    en.wikipedia.org/wiki/Long_short-term_memory

    Long short-term memory (LSTM) [1] is a type of recurrent neural network (RNN) aimed at mitigating the vanishing gradient problem [2] commonly encountered by traditional RNNs. Its relative insensitivity to gap length is its advantage over other RNNs, hidden Markov models , and other sequence learning methods.

  3. Recurrent neural network - Wikipedia

    en.wikipedia.org/wiki/Recurrent_neural_network

    That is, LSTM can learn tasks that require memories of events that happened thousands or even millions of discrete time steps earlier. Problem-specific LSTM-like topologies can be evolved. [56] LSTM works even given long delays between significant events and can handle signals that mix low and high-frequency components.

  4. Autoregressive integrated moving average - Wikipedia

    en.wikipedia.org/wiki/Autoregressive_integrated...

    where L is the likelihood of the data, p is the order of the autoregressive part and q is the order of the moving average part. The k represents the intercept of the ARIMA model. For AIC, if k = 1 then there is an intercept in the ARIMA model ( c ≠ 0) and if k = 0 then there is no intercept in the ARIMA model ( c = 0).

  5. In statistics, autoregressive fractionally integrated moving average models are time series models that generalize ARIMA (autoregressive integrated moving average) models by allowing non-integer values of the differencing parameter.

  6. Autoregressive model - Wikipedia

    en.wikipedia.org/wiki/Autoregressive_model

    There are four sources of uncertainty regarding predictions obtained in this manner: (1) uncertainty as to whether the autoregressive model is the correct model; (2) uncertainty about the accuracy of the forecasted values that are used as lagged values in the right side of the autoregressive equation; (3) uncertainty about the true values of ...

  7. Transformer (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Transformer_(deep_learning...

    In an autoregressive task, [50] the entire sequence is masked at first, and the model produces a probability distribution for the first token. Then the first token is revealed and the model predicts the second token, and so on. The loss function for the task is still typically the same. The GPT series of models are trained by autoregressive tasks.

  8. Autoregressive moving-average model - Wikipedia

    en.wikipedia.org/wiki/Autoregressive_moving...

    The notation ARMAX(p, q, b) refers to a model with p autoregressive terms, q moving average terms and b exogenous inputs terms. The last term is a linear combination of the last b terms of a known and external time series d t {\displaystyle d_{t}} .

  9. GPT-2 - Wikipedia

    en.wikipedia.org/wiki/GPT-2

    GPT-2 was pre-trained on a dataset of 8 million web pages. [2] It was partially released in February 2019, followed by full release of the 1.5-billion-parameter model on November 5, 2019. [3] [4] [5] GPT-2 was created as a "direct scale-up" of GPT-1 [6] with a ten-fold increase in both its parameter count and the size of its training dataset. [5]