enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Phase-contrast microscopy - Wikipedia

    en.wikipedia.org/wiki/Phase-contrast_microscopy

    Phase-contrast microscopy is particularly important in biology. It reveals many cellular structures that are invisible with a bright-field microscope, as exemplified in the figure. These structures were made visible to earlier microscopists by staining, but this required additional preparation and death of the cells. The phase-contrast ...

  3. Phase-contrast imaging - Wikipedia

    en.wikipedia.org/wiki/Phase-contrast_imaging

    In the field of transmission electron microscopy, phase-contrast imaging may be employed to image columns of individual atoms; a more common name is high-resolution transmission electron microscopy. It is the highest resolution imaging technique ever developed, and can allow for resolutions of less than one angstrom (less than 0.1 nanometres).

  4. Phase-contrast X-ray imaging - Wikipedia

    en.wikipedia.org/wiki/Phase-contrast_X-ray_imaging

    X-ray absorption (left) and differential phase-contrast (right) image of an in-ear headphone obtained with a grating interferometer at 60kVp. Phase-contrast X-ray imaging or phase-sensitive X-ray imaging is a general term for different technical methods that use information concerning changes in the phase of an X-ray beam that passes through an object in order to create its images.

  5. Contrast transfer function - Wikipedia

    en.wikipedia.org/wiki/Contrast_transfer_function

    TEM Ray Diagram with Phase Contrast Transfer Function. Contrast transfer theory provides a quantitative method to translate the exit wavefunction to a final image. Part of the analysis is based on Fourier transforms of the electron beam wavefunction. When an electron wavefunction passes through a lens, the wavefunction goes through a Fourier ...

  6. Scanning transmission electron microscopy - Wikipedia

    en.wikipedia.org/wiki/Scanning_transmission...

    Differential phase contrast (DPC) is an imaging mode which relies on the beam being deflected by electromagnetic fields. In the classical case, the fast electrons in the electron beam is deflected by the Lorentz force , as shown schematically for a magnetic field in the figure to the left.

  7. Ptychography - Wikipedia

    en.wikipedia.org/wiki/Ptychography

    The strength and contrast of the phase signal also means that far fewer photon or electron counts are needed to make an image: this is very important in electron ptychography, where damage to the specimen is a major issue that must be avoided at all costs.

  8. Live-cell imaging - Wikipedia

    en.wikipedia.org/wiki/Live-cell_imaging

    After its introduction in the 1940s, live-cell imaging rapidly became popular using phase-contrast microscopy. [11] The phase-contrast microscope was popularized through a series of time-lapse movies (see video), recorded using a photographic film camera. [12] Its inventor, Frits Zernike, was awarded the Nobel Prize in 1953. [13]

  9. Quantitative phase-contrast microscopy - Wikipedia

    en.wikipedia.org/wiki/Quantitative_phase...

    Quantitative phase contrast microscopy or quantitative phase imaging are the collective names for a group of microscopy methods that quantify the phase shift that occurs when light waves pass through a more optically dense object. [1] [2] Translucent objects, like a living human cell, absorb and scatter small amounts of light.