enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Irreducible polynomial - Wikipedia

    en.wikipedia.org/wiki/Irreducible_polynomial

    In mathematics, an irreducible polynomial is, roughly speaking, a polynomial that cannot be factored into the product of two non-constant polynomials.The property of irreducibility depends on the nature of the coefficients that are accepted for the possible factors, that is, the ring to which the coefficients of the polynomial and its possible factors are supposed to belong.

  3. Factorization of polynomials over finite fields - Wikipedia

    en.wikipedia.org/wiki/Factorization_of...

    The number of irreducible monic polynomials of degree n over F q is the number of aperiodic necklaces, given by Moreau's necklace-counting function M q (n). The closely related necklace function N q (n) counts monic polynomials of degree n which are primary (a power of an irreducible); or alternatively irreducible polynomials of all degrees d ...

  4. Irreducibility (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Irreducibility_(mathematics)

    In abstract algebra, irreducible can be an abbreviation for irreducible element of an integral domain; for example an irreducible polynomial. In representation theory, an irreducible representation is a nontrivial representation with no nontrivial proper subrepresentations. Similarly, an irreducible module is another name for a simple module.

  5. Perfect field - Wikipedia

    en.wikipedia.org/wiki/Perfect_field

    Imperfect fields cause technical difficulties because irreducible polynomials can become reducible in the algebraic closure of the base field. For example, [ 4 ] consider f ( x , y ) = x p + a y p ∈ k [ x , y ] {\displaystyle f(x,y)=x^{p}+ay^{p}\in k[x,y]} for k {\displaystyle k} an imperfect field of characteristic p {\displaystyle p} and a ...

  6. Factorization of polynomials - Wikipedia

    en.wikipedia.org/wiki/Factorization_of_polynomials

    For example, the number of irreducible factors of a polynomial is the nullity of its Ruppert matrix. [7] Thus the multiplicities m 1 , … , m k {\displaystyle m_{1},\ldots ,m_{k}} can be identified by square-free factorization via numerical GCD computation and rank-revealing on Ruppert matrices.

  7. Eisenstein's criterion - Wikipedia

    en.wikipedia.org/wiki/Eisenstein's_criterion

    Consider the polynomial Q(x) = 3x 4 + 15x 2 + 10.In order for Eisenstein's criterion to apply for a prime number p it must divide both non-leading coefficients 15 and 10, which means only p = 5 could work, and indeed it does since 5 does not divide the leading coefficient 3, and its square 25 does not divide the constant coefficient 10.

  8. Hilbert's irreducibility theorem - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_irreducibility...

    To see this, choose a monic irreducible polynomial f(X 1, ..., X n, Y) whose root generates N over E. If f(a 1, ..., a n, Y) is irreducible for some a i, then a root of it will generate the asserted N 0.) Construction of elliptic curves with large rank. [2] Hilbert's irreducibility theorem is used as a step in the Andrew Wiles proof of Fermat's ...

  9. Casus irreducibilis - Wikipedia

    en.wikipedia.org/wiki/Casus_irreducibilis

    Let p ∈ F[x] be an irreducible polynomial which splits in a formally real extension R of F (i.e., p has only real roots). Assume that p has a root in which is an extension of F by radicals. Then the degree of p is a power of 2, and its splitting field is an iterated quadratic extension of F. [7] [8]: 571–572