Search results
Results from the WOW.Com Content Network
The order in probability notation is used in probability theory and statistical theory in direct parallel to the big O notation that is standard in mathematics.Where the big O notation deals with the convergence of sequences or sets of ordinary numbers, the order in probability notation deals with convergence of sets of random variables, where convergence is in the sense of convergence in ...
The condition that the martingale is bounded is essential; for example, an unbiased random walk is a martingale but does not converge. As intuition, there are two reasons why a sequence may fail to converge. It may go off to infinity, or it may oscillate. The boundedness condition prevents the former from happening.
In mathematics, Doob's martingale inequality, also known as Kolmogorov’s submartingale inequality is a result in the study of stochastic processes.It gives a bound on the probability that a submartingale exceeds any given value over a given interval of time.
The word stochastic is used to describe other terms and objects in mathematics. Examples include a stochastic matrix, which describes a stochastic process known as a Markov process, and stochastic calculus, which involves differential equations and integrals based on stochastic processes such as the Wiener process, also called the Brownian ...
In the theory of stochastic processes in discrete time, a part of the mathematical theory of probability, the Doob decomposition theorem gives a unique decomposition of every adapted and integrable stochastic process as the sum of a martingale and a predictable process (or "drift") starting at zero.
A bounded operator: is not a bounded function in the sense of this page's definition (unless =), but has the weaker property of preserving boundedness; bounded sets are mapped to bounded sets (). This definition can be extended to any function f : X → Y {\displaystyle f:X\rightarrow Y} if X {\displaystyle X} and Y {\displaystyle Y} allow for ...
Isotropic and unimodal stochastic processes [ edit ] In studying stochastic processes , in particular Lévy processes , [ 3 ] a reasonable assumption to make is that, for each element of the index set, the probability distributions of the random variables are isotropic or even unimodal measures.
In more advanced mathematics the monotone convergence theorem usually refers to a fundamental result in measure theory due to Lebesgue and Beppo Levi that says that for sequences of non-negative pointwise-increasing measurable functions (), taking the integral and the supremum can be interchanged with the result being finite if either one is ...