Search results
Results from the WOW.Com Content Network
The Maxwell–Boltzmann distribution is a result of the kinetic theory of gases, which provides a simplified explanation of many fundamental gaseous properties, including pressure and diffusion. [3] The Maxwell–Boltzmann distribution applies fundamentally to particle velocities in three dimensions, but turns out to depend only on the speed ...
Maxwell–Boltzmann statistics is used to derive the Maxwell–Boltzmann distribution of an ideal gas. However, it can also be used to extend that distribution to particles with a different energy–momentum relation , such as relativistic particles (resulting in Maxwell–Jüttner distribution ), and to other than three-dimensional spaces.
In a plasma, the Boltzmann relation describes the number density of an isothermal charged particle fluid when the thermal and the electrostatic forces acting on the fluid have reached equilibrium. In many situations, the electron density of a plasma is assumed to behave according to the Boltzmann relation, due to their small mass and high ...
The following other wikis use this file: Usage on be.wikipedia.org Размеркаванне Максвела; Usage on da.wikipedia.org Maxwell-Boltzmann-fordelingen
Using the results from either Maxwell–Boltzmann statistics, Bose–Einstein statistics or Fermi–Dirac statistics we use the Thomas–Fermi approximation (gas in a box) and go to the limit of a very large trap, and express the degeneracy of the energy states as a differential, and summations over states as integrals.
The general equation can then be written as [6] = + + (),. where the "force" term corresponds to the forces exerted on the particles by an external influence (not by the particles themselves), the "diff" term represents the diffusion of particles, and "coll" is the collision term – accounting for the forces acting between particles in collisions.
[26] In 1871, Ludwig Boltzmann generalized Maxwell's achievement and formulated the Maxwell–Boltzmann distribution. The logarithmic connection between entropy and probability was also first stated by Boltzmann. At the beginning of the 20th century, atoms were considered by many physicists to be purely hypothetical constructs, rather than real ...
The relation is generally expressed as a microscopic change in internal energy in terms of microscopic changes in entropy, and volume for a closed system in thermal equilibrium in the following way. d U = T d S − P d V {\displaystyle \mathrm {d} U=T\,\mathrm {d} S-P\,\mathrm {d} V\,}