Search results
Results from the WOW.Com Content Network
The Flajolet–Martin algorithm is an algorithm for approximating the number of distinct elements in a stream with a single pass and space-consumption logarithmic in the maximal number of possible distinct elements in the stream (the count-distinct problem).
To handle the bounded storage constraint, streaming algorithms use a randomization to produce a non-exact estimation of the distinct number of elements, . State-of-the-art estimators hash every element into a low-dimensional data sketch using a hash function, (). The different techniques can be classified according to the data sketches they store.
Here input is the input array to be sorted, key returns the numeric key of each item in the input array, count is an auxiliary array used first to store the numbers of items with each key, and then (after the second loop) to store the positions where items with each key should be placed, k is the maximum value of the non-negative key values and ...
A simple dynamic array can be constructed by allocating an array of fixed-size, typically larger than the number of elements immediately required. The elements of the dynamic array are stored contiguously at the start of the underlying array, and the remaining positions towards the end of the underlying array are reserved, or unused.
Elements that occur more than / times in a multiset of size may be found by a comparison-based algorithm, the Misra–Gries heavy hitters algorithm, in time (). The element distinctness problem is a special case of this problem where =.
Thus a one-dimensional array is a list of data, a two-dimensional array is a rectangle of data, [12] a three-dimensional array a block of data, etc. This should not be confused with the dimension of the set of all matrices with a given domain, that is, the number of elements in the array. For example, an array with 5 rows and 4 columns is two ...
The regular algorithm requires an n-entry array initialized with the input values, but then requires only k iterations to choose a random sample of k elements. Thus, it takes O(k) time and n space. The inside-out algorithm can be implemented using only a k-element array a. Elements a[i] for i ≥ k are simply not stored.
If the current element is greater than the target, or the search reaches the end of the linked list, the procedure is repeated after returning to the previous element and dropping down vertically to the next lower list. The expected number of steps in each linked list is at most /, which can be seen by tracing the search path backwards from the ...