Search results
Results from the WOW.Com Content Network
The cytoskeleton is a complex, dynamic network of interlinking protein filaments present in the cytoplasm of all cells, including those of bacteria and archaea. [2] In eukaryotes , it extends from the cell nucleus to the cell membrane and is composed of similar proteins in the various organisms.
The cytosol's filaments include the protein filaments such as actin filaments and microtubules that make up the cytoskeleton, as well as soluble proteins and small structures such as ribosomes, proteasomes, and the mysterious vault complexes. [14] The inner, granular and more fluid portion of the cytoplasm is referred to as endoplasm.
Cell biology is the study of the structural and functional units of cells. Cell biology encompasses both prokaryotic and eukaryotic cells and has many subtopics which may include the study of cell metabolism, cell communication, cell cycle, biochemistry, and cell composition.
Intermediate filaments are part of the cytoskeleton structure found in most eukaryotic cells. An example of an intermediate filament is a Neurofilament. They provide support for the structure of the axon and are a major part of the cytoskeleton.
The prokaryotic cytoskeleton is the collective name for all structural filaments in prokaryotes. [2] Some of these proteins are analogues of those in eukaryotes , while others are unique to prokaryotes.
Eukaryotic cells transport packets of components to particular intracellular locations by attaching them to molecular motors that haul them along microtubules and actin filaments. Since intracellular transport heavily relies on microtubules for movement, the components of the cytoskeleton play a vital role in trafficking vesicles between ...
Cytoskeletal drugs are small molecules that interact with actin or tubulin.These drugs can act on the cytoskeletal components within a cell in three main ways. Some cytoskeletal drugs stabilize a component of the cytoskeleton, such as taxol, which stabilizes microtubules, or Phalloidin, which stabilizes actin filaments.
Microfilament functions include cytokinesis, amoeboid movement, cell motility, changes in cell shape, endocytosis and exocytosis, cell contractility, and mechanical stability. Microfilaments are flexible and relatively strong, resisting buckling by multi-piconewton compressive forces and filament fracture by nanonewton tensile forces.